NeoHybrid liver graft – proof of concept

224197
Cells Tissues Organs accepted our latest paper on "Allogeneic liver transplantation and subsequent syngeneic hepatocyte transplantation in a rat model – proof of concept for in vivo tissue engineering" for publication.
Authors are Susanne Rohn, Jan Schroeder, Henriette Riedel, Dietrich Polenz, Katarina Stanko, Anja Reutzel-Selke, Peter Tang, Lydia Brusendorf, Nathanael Raschzok, Peter Neuhaus, Johann Pratschke, Birgit Sawitzki, Igor M. Sauer, and Martina T. Mogl.

Aim of the project was the evaluation of a new concept for in vivo tissue engineering using autologous primary human hepatocytes and hepatic progenitor cells isolated from diseased livers explanted during orthotopic liver transplantation (LTx). Cells will be isolated and infused into the spleen for repopulation of the allogeneic liver graft. The latter is serving as biological matrix for the engraftment of autologous cells. Once these cells have engrafted, it is assumed that autologous cells will repopulate the allogeneic liver, since they should have a selective advantage due to their autologous origin. It is postulated that this will lead to a neo-hybrid liver graft, reducing immunogenicity and inducing immunoregulation thus minimizing the need for extensive immunosuppression and eventually inducing operational tolerance.
We therefore developed a new rat model for combined liver and liver cell transplantation under stable immunosuppression. Immunohistochemistry demonstrated the engraftment of transplanted cells, as confirmed by fluorescence in-situ hybridization, showing repopulation of the liver graft with 15.6 % male cells (± 1.8 SEM) at day 90. The quantitative PCR revealed 14.15 % (mean ± 5.09 SEM) male DNA at day 90. Engraftment of transplanted autologous cells after combined liver and cell transplantation was achieved for up to 90 days under immunosuppression. Immunohistochemistry indicated cell proliferation, and the fluorescence in-situ hybridization results were partly confirmed by quantitative RT-PCR. This new protocol in rats appears feasible to address long-term function and eventually induction of operational tolerance in the future.

LTx – microRNA signatures in peripheral blood ?

ibmk20.v020.i08.cover
BIOMARKERS accepted our latest paper on „microRNA signatures in peripheral blood fail to detect acute cellular rejection after liver transplantation“ for publication. Authors are N. Raschzok, A. Reutzel-Selke, R. Schmuck, L. Tannus, M. Morgul, C. Dietel, A. Leder, B. Struecker, S. Lippert, H. Sallmon, M. Schmelzle, M. Bartels, S. Jonas, J. Pratschke, and I.M. Sauer.

We investigated whether microRNA signatures in whole blood samples are associated with acute cellular rejection (ACR) after liver transplantation. Blood samples were collected using Paxgene technology and analyzed by microarrays and qRT-PCR.
microRNA signatures failed to distinguish between 19 patients with ACR and 16 controls. Let-7b-5p and let-7c were up-regulated in a subgroup of patients with ACR during the 6th and 7th postoperative day but failed in an independent validation of 20 patients.
microRNA signatures in whole blood processed by Paxgene technology are not suited for detection of ACR after liver transplantation.

The Morning After

Referring to our paper „CD44 and CXCL9 serum protein levels predict the risk of clinically significant allograft rejection after liver transplantation“ Geoffrey W. McCaughan, Patrick Bertolino and David G. Bowen wrote an interesting editorial entitled „Could The Morning After liver transplant be immunologically interesting?“

They conclude, „that our study urges us to study the immune system response in liver allograft recipients during the very early phases after liver transplantation and to explore how events in immune organs and the allograft are reflected within the serum. Whether the patterns observed truly represent early detection of ACR versus tolerance, or a combination of both, requires further study and experimentation, including the identification of the cellular sources of these and other potential markers of immune outcome. It seems that despite significant levels of immunosuppressive drugs, immune activation and engagement occurs very early after human liver transplant, within the first 24 hours, in a manner that may have similarities with experimental animal models. Thus, the morning after effect could be an exciting window to longer-term immune outcomes, rather than just being preoccupied with observing important routine outcomes and detecting early complications.“ See Liver Transplantation, Volume 21, Issue 9, pages 1120–1122, September 2015

WTC 2014 in San Francisco

WTC2014

Ben Strücker presented the latest results on „Perfusion Decellularization of Pig and Rat Livers Applying Undulating Surrounding Pressure Conditions“. Co-authors were A. Butter, K. Hillebrandt, R. Voitl, D. Polenz, A. Reutzel-Selke, K. Joehrens, D. Geisel, N. Raschzok, P. Neuhaus, J. Pratschke and I.M. Sauer.

Nathanael Raschzok presentation was entitled: „Perioperative Serum Levels of CXCL9 and CD44 Predict the Risk of Acute Cellular Rejection in Liver Graft Recipients“. Co-authors were N. Raschzok, A. Reutzel-Selke, R. Schmuck, M. Morgul, M. Bartels, G. Puhl, D. Seehofer, M. Bahra, A. Pascher, P. Neuhaus, J. Pratschke and I.M. Sauer.