Magnetic field and cells labeled with IO particles

tec.2017.23.issue-4.cover
Our paper entitled "The magnetic field of magnetic resonance imaging systems does not affect cells labeled with micrometer-sized iron oxide particles," has been accepted for publication in Tissue Engineering, Part C: Methods. Authors are Martin Kluge, Annekatrin Leder, Karl H. Hillebrandt, Benjamin Struecker, Dominik Geisel, Timm Denecke, Rebeka D. Major, Anja Reutzel-Selke, Peter Tang, Steffen Lippert, Christian Schmidt, Johann Pratschke, Igor M. Sauer, and Nathanael Raschzok.

Labeling using iron oxide particles enables cell tracking via magnetic resonance imaging (MRI). However, the magnetic field can affect the particle-labeled cells. Here, we investigated the effects of a clinical MRI system on primary human hepatocytes labeled using micrometer-sized iron oxide particles (MPIOs).
HuH7 tumor cells were incubated with increasing concentrations of biocompatible, silica-based, micron-sized iron oxide-containing particles (sMPIO; 40 – 160 particles/cell). Primary human hepatocytes were incubated with 100 sMPIOs/cell. The particle-labeled cells and the native cells were imaged using a clinical 3.0-T MRI system, whereas the control groups of the labeled and unlabeled cells were kept at room temperature without exposure to a magnetic field. Viability, formation of reactive oxygen species, aspartate aminotransferase leakage, and urea and albumin synthesis were assessed over a culture period of 5 days.
The dose finding study showed no adverse effects of the sMPIO labeling on HuH7 cells. MRI had no adverse effects on the morphology of the sMPIO-labeled primary human hepatocytes. Imaging using the T1- and T2-weighted sequences did not affect the viability, transaminase leakage, formation of reactive oxygen species, or metabolic activity of the sMPIO-labeled cells or the unlabeled, primary human hepatocytes.
sMPIOs did not induce adverse effects on the labeled cells under the conditions of the magnetic field of a clinical MRI system.

Dr. rer. medic. Dipl.-Ing. Annekatrin Leder

Dr. Leder
Today, Anne Leder successfully defended her thesis "summa cum laude"!

Her work entitled "Entwicklung und Evaluierung eines mikroskaligen, Oligonukleotid-gekoppelten Eisenoxidpartikels zur Stimulation kultivierter humaner Hepatozyten" deals with particle-based delivery systems for therapeutic manipulation and tracking of transplanted cells by magnetic resonance imaging (MRI) based on multifunctional, silica based micron-sized iron oxide-containing particles (sMPIO) that combine fluorescence imaging, MRI tracking, and on-the-spot targeting of specific microRNAs on a particle surface for therapeutic manipulation by RNA interference.

CONGRATULATIONS !

Einladung zur öffentlichen Abschlußpräsentation

EFRE
Sehr geehrte Damen und Herren,
Dear ladies and gentlemen,

Sie sind herzlich eingeladen, unserer öffentlichen Abschlusspräsentation unseres EU/EFRE-Projekts am 20.03.2013 um 15:00 Uhr beizuwohnen. Zusammen mit unseren Partnern der Firma microparticles GmbH werden wir den aktuellen Stand zur „Entwicklung von Partikel zur Detektion und ultralokoregionären Stimulation transplantierter Leberzellen“ darlegen.
You are cordially invited to attend our public presentation of our EU/EFRE project. Together with our partners of microparticles GmbH we will present our latest results concerning the „Development of particles for detection and ultralocoregional stimulation of transplanted liver cells“.

Wann/When?
20.03.2013 um/at 15:00

Wo/Where?
Experimentelle Chirurgie und Regenerative Medizin
Klinik für Allgemein-, Viszeral- und Transplantationschirurgie
Charité, Campus Virchow-Klinikum
Forschungshaus/BMFZ
Pilzraum, 1.OG

Wir wären dankbar, wenn Sie Ihr Kommen via email (anja.selke@charite.de)bestätigen könnten.
RSVP via email (anja.selke@charite.de).

Functionalizable silica-based MPIO for cellular MRI

Cell_Transplanta_4ea7115ad2607_146x203
Our latest manuscript entitled "Functionalizable silica-based micron-sized iron oxide particles for cellular Magnetic Resonance Imaging" was accepted for publication in the journal "Cell Transplantation".

Cellular therapies require methods for non-invasive visualization of transplanted cells. Micron-sized iron oxide particles (MPIOs) generate strong contrast in
Magnetic Resonance Imaging (MRI) and are therefore ideally suited as an intracellular contrast agent to image cells under clinical conditions. However,
MPIOs were previously not applicable for clinical use. Here, we present the development and evaluation of silica-based micron-sized iron oxide particles
(sMPIOs) with a functionalizable particle surface.


UPDATE: The paper is now available (Cell Transplant. 2013; 22(11): 1959-1570)