BIH Paper of the Month...

Paper-of-the.month
Benjamin Strücker, Hendrik Napierala and the rest of the team were awarded with the BIH Paper of the Month for their publication on a new method for developing a transplantable endocrine Neo-Pancreas.
The BIH Paper of the Month is awarded by the BIH Board of Directors to honor a special publication achievement from the joint research space of Charité and MDC. The Paper of the Month is sponsored by the Stiftung Charité as part of its Johanna Quandt Private Excellence Initiative.

H. Napierala, K.-H. Hillebrandt, N. Haep, P. Tang, M. Tintemann, J. Gassner, M. Noesser, H. Everwien, N. Seiffert, M. Kluge, E. Teegen, D. Polenz, S. Lippert, D. Geisel, A. Reutzel Selke, N. Raschzok, A. Andreou, J. Pratschke, I. M. Sauer & B. Struecker. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports 7. Article number: 41777 (2017) doi:10.1038/srep41777

You may download the publication here.

Engineering an endocrine Neo-Pancreas

scientific reports
Scientific Reports accepted our latest paper on „Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans“. Authors are H. Napierala, K. Hillebrandt, N. Haep, P. Tang, M. Tintemann, J. Gassner, M. Noesser, H. Everwien, N. Seiffert, M. Kluge, E. Teegen, D. Polenz, S. Lippert, D. Geisel, A. Reutzel-Selke, N. Raschzok, A. Andreou, J. Pratschke, I.M. Sauer, and B. Struecker.

Decellularization of pancreata and repopulation of these non-immunogenic matrices with islets and endothelial cells could provide transplantable, endocrine Neo- Pancreata. In this study, rat pancreata were perfusion decellularized and repopulated with intact islets, comparing three perfusion routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively removed all cellular components but conserved the pancreas specific extracellular matrix. Digital subtraction angiography of the matrices showed a conserved integrity of the decellularized vascular system but a contrast emersion into the parenchyma via the decellularized pancreatic duct. Islets infused via the pancreatic duct leaked from the ductular system into the peri-ductular decellularized space despite their magnitude. TUNEL staining and Glucose stimulated insulin secretion revealed that islets were viable and functional after the process.
We present the first available protocol for perfusion decellularization of rat pancreata via three different perfusion routes. Furthermore, we provide first proof-of-concept for the repopulation of the decellularized rat pancreata with functional islets of Langerhans. The presented technique can serve as a bioengineering platform to generate implantable and functional endocrine Neo-Pancreata.

Decellularization of pancreata – EPITA Award

IMG_5485
Ben Strücker presented our latest results on DECELLULARIZATION OF WHOLE RAT PANCREATA – EVALUATION OF THREE DIFFERENT PERFUSION ROUTES at the 5th EPITA Winter Symposium in Innsbruck from the 25th to the 27th of January 2015. He received the AIDPIT&EPITA Award for the best oral presentation.
Congratulations!

Ben Strücker presented three effective protocols for rat pancreas perfusion decellularization, evaluating different perfusion routes. In contrast to liver decellularization the perfusion route seems to have no major impact on decellularization results. The dPECMs could serve for cellular repopulation with islets from a different (xenogene) origin to generate functional, transplantable endocrine pancreata in vitro.