CSAAS and MPIO-labelled cells
Stacks Image 12289
As a result of the fruitful collaboration with the Institute for Analytical Sciences Berlin Nathanael Raschzok's paper on "Quantification of Cell Labelling with Micron-Sized Iron Oxide Particles Using Continuum Source Atomic Absorption Spectrometry" has been accepted by Tissue Engineering for publication. Co-authors are Nils Billecke, Nora N. Kammer, Mehmet H. Morgul, Michaela K. Adonopoulou, Igor M. Sauer, Stefan Florek, Helmut Becker-Ross, and Mao-Dong Huang.

Detection of cells after transplantation is necessary for quality control in regenerative medicine. Labelling with micron-sized iron oxide particles (MPIOs) enables non-invasive detection of single cells by magnetic resonance imaging. However, techniques for evaluation of the particle uptake are challenging. The aim of this study was to investigate continuum source atomic absorption spectrometry (CSAAS) for this purpose. Porcine liver cells were labelled with MPIOs and the iron concentration of the cell samples was investigated by a CSAAS spectrometer equipped with a Perkin-Elmer THGA graphite furnace. The weak iron line at 305.754 nm provides only about 1/600 sensitivity of the iron resonance line at 248.327 nm and was used for CSAAS measurements. Iron concentrations measured from labelled cells ranged from (5.8 ± 0.3) to (25.8 ± 0.9) pg Fe/cell, correlating to an uptake of (8.2 ± 0.5) to (25.7 ± 0.8) particles/cell. The results were verified by standardised morphometric evaluation. CSAAS enabled rapid quantification of particle load from small quantities of cells without extensive preparation steps. Thereby, CSAAS could be used for quality control in a clinical setting of cell transplantation.




This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.