Extended reality technologies for support of surgical workflows
Stacks Image 14560
Current developments in the field of extended reality (XR) could prove useful in the optimization of surgical workflows, time effectiveness and postoperative outcome. Although still primarily a subject of research, the state of XR technologies is rapidly improving and approaching feasibility for a broad clinical application. Surgical fields of application of XR technologies are currently primarily training, preoperative planning and intraoperative assistance. For all three areas, products already exist (some clinically approved) and technical feasibility studies have been conducted. In teaching, the use of XR can already be assessed as fundamentally practical and meaningful but still needs to be evaluated in large multicenter studies. In preoperative planning XR can also offer advantages, although technical limitations often impede routine use; however, for cases of intraoperative use informative evaluation studies are mostly lacking, so that an assessment is not yet possible in a meaningful way. Furthermore, there is a lack of assessments regarding cost-effectiveness in all three areas. The XR technologies enable proven advantages in surgical workflows despite the lack of high-quality evaluation with respect to the practical and clinical use of XR. New concepts for effective interaction with XR media also need to be developed. In the future, further research progress and technical developments in the field can be expected.

Authors are C. Rüger, S. Moosburner and I.M. Sauer (Chirurg 2020; 91(7): 544-552).
Junior Professorship for Digital Surgery and Interdisciplinary Technology Research
Stacks Image 14558
The Department of Surgery of the Charité (Director: Prof. Dr. Johann Pratschke) at the Charité Center 8 (CharitéCenter for Surgery) invites applications for the position of the Junior Professorship for Digital Surgery and interdisciplinary Technology Research (Salary Group: W1 BBesG-ÜfBE, non-tenured) with the reference number: Prof. 546/2020.

The initial appointment is for three years with the optional extension for another three years follow-ing successful evaluation. It is aimed to turn the Junior Professorship into a W2-Professorship (Salary Group: W2 BBesG-ÜfBE) after six years.The successful candidate has to fulfill the appointment requirements in accordance with § 102a of the Berlin Higher Education Act (Berliner Hochschulgesetz, Gem. § 102a BerlHG) and needs to credibly demonstrate through his/her previous scientific work that he/she is able to fulfill the expectations of the junior professorship.

One of the tasks of this Junior Professorship is the appropriate representation of the research area mentioned above. Within the framework of the Cluster of Excellence Matters of Activity – Image Space Material, he/she is expected to evaluate, accompany and advance the digital transformation in surgery and related disciplines as well as expand the repertoire of methods and initiate innovations. In cooperation with the research areas Cutting and Material Form Function of the Cluster of Excellence, new surgical cutting techniques are to be investigated and developed. It is planned to be linked to the currently being established institutions, The Simulated Human Being (Si-M) and the Berlin Simulation and Training Centre (BeST). In addition to the tasks mentioned, the following three fields of activity are to be covered:

Interdisciplinary Knowledge Transfer

  • Implementation of new applications from areas such as deep learning, extended reality (mixed and virtual reality) or robotics in surgical practice requires an intensification of interdisciplinary cooperation
  • Continuous exchange between industry and practice as well as with adjacent disciplines (e.g. Radiology)
  • Integration of a growing number of applications and competencies from areas outside established medical technology, design, computer science or human factor studies

Technology Assessment

  • Sustainable implementation of digital technologies through opportunity and risk assessment
  • Advising the Department of Surgery on investment decisions through appropriate risk and media competency


  • Identification of concrete application locations and practices of digital surgery within the clinic and experimental research (e.g. use of technologies in the context of biomedical research approaches to organ replacement as well as oncological models) for future Living Labs and to demonstrate these to the public
  • Integration of users, research projects and start-ups also outside the Clinic

The successful candidate will be engaged in teaching activities of the medical education curriculum at Charité, supervise Master and Doctoral candidates, and participate in academic self-organization. In addition, the candidate should present concepts for a good supervision of doctoral students as well as for the integration of his/her research activities into the teaching of the Charité. Appointment requirements are governed by article 102a of the Berlin Higher Education Act (Berliner Hochschulgesetz:§ 102a BerlHG). Completed university degree in Natural Sciences, Humanities and/or Life Sciences or any other related field of Medicine or non-medicine is required. In addition, a Doctorate (Ph.D and/or M.D.) and significant post-doctoral experience are required. Basic medical knowledge is desired.

The Charité is an equal opportunity employer committed to excellence through diversity. As women are under-represented in academics, we explicitly encourage women to send in their application. Women will be given preference over equally qualified men (within the framework of the legal possibilities). We value diversity and therefore welcome all applications – regardless of gender, nationality, social background, religion or age. Equally qualified applicants with disabilities will be given preference.

Written applications according to the format specified on should be submittedby June 19th, 2020 under For further questions on details, please contact Prof. Dr. Igor Maximilian Sauer.
Vascular anatomy of the juvenile Göttingen minipig
Stacks Image 11398
Lab Animal accepted our „Computed tomography-based survey of the vascular anatomy of the juvenile Göttingen minipig“ for publication.

Over the past 50 years, image-guided procedures have been established for a wide range of applications. The development and clinical translation of new treatment regimens necessitate the availability of suitable animal models. The juvenile Göttingen minipig presents a favourable profile as a model for human infants. However, no information can be found regarding the vascular system of juvenile minipigs in the literature. Such information is imperative for planning the accessibility of target structures by catheterization.

We present here a complete mapping of the arterial system of the juvenile minipig based on contrast-enhanced computed tomography. Four female animals weighing 6.13 ± 0.72 kg were used for the analyses. Imaging was performed under anaesthesia, and the measurement of the vascular structures was performed independently by four investigators. Our dataset forms a basis for future interventional studies in juvenile minipigs, and enables planning and refinement of future experiments according to the 3R (replacement, reduction and refinement) principles of animal research.

Authors are J. Siefert, K.H. Hillebrandt, M. Kluge, D. Geisel, P. Podrabsky, T. Denecke, M. Nösser, J. Gassner, A. Reutzel-Selke, B. Strücker, M.H. Morgul, S. Guel-Klein, J.K. Unger, A. Reske, J. Pratschke, I.M. Sauer, and N. Raschzok.
Read More
 Page 1 / 1 




This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.