News

Cells isolated from diseased explanted livers
Stacks Image 24617
The International Journal of Artificial Organs (official journal of the European Society for Artificial Organs [ESAO]) published our paper on Isolation, characterization and cold storage of cells isolated from diseased explanted livers. Authors are Belaschk E, Rohn S, Mukiibi R, Reutzel-Selke A, Tang P, Sawitzki B, Pratschke J, Sauer IM and Mogl MT.

Livers discarded after standard organ retrieval are commonly used as a cell source for hepatocyte transplantation. Due to the scarcity of organ donors, this leads to a shortage of suitable cells for transplantation. Here, the isolation of liver cells from diseased livers removed during liver transplantation is studied and compared to the isolation of cells from liver specimens obtained during partial liver resection. Hepatocytes from 20 diseased explanted livers (Ex-group) were isolated, cultured and stored at 4°C for up to 48 hours, and compared to hepatocytes isolated from the normal liver tissue of 14 liver lobe resections (Rx-group). The nonparenchymal cell fraction (NPC) was analyzed by flow cytometry to identify potential liver progenitor cells, and OptiPrep™ (Sigma-Aldrich) density gradient centrifugation was used to enrich the progenitor cells for immediate transplantation. There were no differences in viability, cell integrity and metabolic activity in cell culture and survival after cold storage when comparing the hepatocytes from the Rx-group and the Ex-group. In some cases, the latter group showed tendencies of increased resistance to isolation and storage procedures. The NPC of the Ex-group livers contained considerably more EpCAM+ and significantly more CD90+ cells than the Rx-group. Progenitor cell enrichment was not sufficient for clinical application. Hepatocytes isolated from diseased explanted livers showed the essential characteristics of being adequate for cell transplantation. Increased numbers of liver progenitor cells can be isolated from diseased explanted livers. These results support the feasibility of using diseased explanted livers as a cell source for liver cell transplantation.
Read More
Magnetic field and cells labeled with IO particles
Stacks Image 24637
Our paper entitled "The magnetic field of magnetic resonance imaging systems does not affect cells labeled with micrometer-sized iron oxide particles," has been accepted for publication in Tissue Engineering, Part C: Methods. Authors are Martin Kluge, Annekatrin Leder, Karl H. Hillebrandt, Benjamin Struecker, Dominik Geisel, Timm Denecke, Rebeka D. Major, Anja Reutzel-Selke, Peter Tang, Steffen Lippert, Christian Schmidt, Johann Pratschke, Igor M. Sauer, and Nathanael Raschzok.

Labeling using iron oxide particles enables cell tracking via magnetic resonance imaging (MRI). However, the magnetic field can affect the particle-labeled cells. Here, we investigated the effects of a clinical MRI system on primary human hepatocytes labeled using micrometer-sized iron oxide particles (MPIOs).  HuH7 tumor cells were incubated with increasing concentrations of biocompatible, silica-based, micron-sized iron oxide-containing particles (sMPIO; 40 – 160 particles/cell). Primary human hepatocytes were incubated with 100 sMPIOs/cell. The particle-labeled cells and the native cells were imaged using a clinical 3.0-T MRI system, whereas the control groups of the labeled and unlabeled cells were kept at room temperature without exposure to a magnetic field. Viability, formation of reactive oxygen species, aspartate aminotransferase leakage, and urea and albumin synthesis were assessed over a culture period of 5 days. 
The dose finding study showed no adverse effects of the sMPIO labeling on HuH7 cells. MRI had no adverse effects on the morphology of the sMPIO-labeled primary human hepatocytes. Imaging using the T1- and T2-weighted sequences did not affect the viability, transaminase leakage, formation of reactive oxygen species, or metabolic activity of the sMPIO-labeled cells or the unlabeled, primary human hepatocytes. sMPIOs did not induce adverse effects on the labeled cells under the conditions of the magnetic field of a clinical MRI system.
Read More
12th Congress of the Cell Transplant Society
Stacks Image 25216
The 12th Congress of the Cell Transplant Society tookplace in Milan, Italy, from July 7 to 11, 2013.
Nathanael Raschzok gave a presentation on "Loco-regional detection and stimulation of transplanted liver cells by particle-based miRNA depletion" and Martina Mogl on "isolation of adult hepatocytes and progenitor cells from explanted diseased human livers“.
Read More
CARS microscopy of MPIO
Stacks Image 25406
Following a successful project sponsored by the BMBF G. Pless, I.M. Sauer and U. Rauen report on the "Improvement of the cold storage of isolated human hepatocytes" (Cell Transplant. 2011 Jun 7. [Epub ahead of print]).
Increasing amounts of human hepatocytes are needed for clinical applications and different fields of research, such as cell transplantation, bioartificial liver support and pharmacological testing. This demand calls for adequate storage options for isolated human liver cells. As cryopreservation results in severe cryoinjury, short term storage is currently performed at 2-8º C in preservation solutions developed for the storage of solid organs. However, besides slowing down cell metabolism, cold also induces cell injury, which is, in many cell types, iron-dependent and not counteracted by current storage solutions. In this study, we aimed to characterize storage injury to human hepatocytes and develop a customized solution for cold storage of these cells. Human hepatocytes were isolated from material obtained from partial liver resections, seeded in monolayer cultures and, after a pre-culture period, stored in the cold in classical and new solutions followed by rewarming in cell culture medium.Human hepatocytes displayed cold-induced injury, resulting in > 80% cell death (LDH release) after one week of cold storage in University of Wisconsin solution or cell culture medium and 3 h of rewarming. Cold-induced injury could be significantly reduced by the addition of the iron chelators deferoxamine and LK 614. Experiments with modified solutions based on the new organ preservation solution Custodiol-N showed that ion-rich variants were better than ion-poor variants, chloride-rich solutions better than chloride-poor solutions, potassium as main cation superior to sodium and pH 7.0 superior to pH 7.4. LDH release after two weeks of cold storage in the thus optimized solution was below 20%, greatly improving cold storage of human hepatocytes. The results were confirmed by the assessment of hepatocellular mitochondrial membrane potential and functional parameters (resazurin reduction, glucacon-stimulated glucose liberation) and thus suggest the use of a customized hepatocyte storage solution for the cold storage of these cells.
Read More
Fast dynamic MRI during liver cell Tx
Stacks Image 25426
Micrometer-sized iron oxide particles (MPIOs) attract increasing interest as contrast agents for cellular tracking by clinical Magnetic Resonance Imaging (MRI). Despite the great potential of MPIOs for in vivo imaging of labeled cells, little is known on the intracellular localization of these particles following uptake due to the lack of techniques with the ability to monitor the particle uptake in vivo at single-cell level. Here, we show that coherent anti-Stokes Raman scattering (CARS) microscopy enables non-invasive, label-free imaging of MPIOs in living cells with sub-micron resolution in three dimensions. CARS allows simultaneous visualization of the cell framework and the MPIOs, where the particles can be readily distinguished from other cellular components of comparable dimensions, and localized inside the cell.
The fruitful cooperation with the FOM Institute AMOLF in Masterdam resulted in the paper "CARS microscopy for the visualization of micrometer-sized iron oxide MRI contrast agents in living cells" (Rago G, Langer CM, Brackman C, Day JP, Domke KF, Raschzok N, Schmidt C, Sauer IM, Enejder A, Mogl MT, Bonn M.) published in Biomed Opt Express. 2011 Sep 1;2(9):2470-83.
Read More
Monitoring cell transplantation in swine model via MRI

Nora Kammer's paper in Artificial Organs on "Labelling of primary human hepatocytes with micron-sized iron oxide particles in suspension culture suitable for large-scale preparation" is available pre-print. Co-authors are Nils Billecke, Mehmet H. Morgul, Michaela K. Adonopoulou, Martina Mogl, Mao D. Huang, Stefan Florek, Katharina R. L. Schmitt, Nathanael Raschzok and Igor M. Sauer.

Read More
Modified nanoparticles & multimodal imaging
Stacks Image 25544
Lars Stelter's studies on In vitro and in vivo detectability of modified superparamagnetic nanoparticles for multimodal imaging using fluorescence microscopy, 3T MRI and animal PET are published in the latest issue of Molecular Imaging & Biology (Mol Imaging Biol. 2010 Jan-Feb;12(1):25-34). Co-authors are Jens Pinkernelle, Roger Michel, Ruth Schwartländer, Nathanael Raschzok, Mehmet H. Morgul, Martin Koch, Timm Denecke, Holger Amthauer, Juri Ruf, Andreas Jordan, Bernd Hamm, Igor M. Sauer, Ulf Teichgräber.
Cell transplantation is a major field in regenerative medicine and a promising alternative to whole organ transplantation. However, the process of cell engraftment is not yet fully understood and the hitherto achieved clinical outcome is limited. The aim of our study was to modify an aminosilan-coated nanoparticle for cell labeling and make it applicable for multimodal imaging using MRI, PET and fluorescent imaging. HIV-1 tat, linked FITC, and Gallium-68 were covalently bound to the particle and injected into Wistar rats. Animal-PET imaging was performed followed by MRI at 3.0T. Hepatic accumulation of the particles was proven by radionuclide distribution after 10 minutes in PET as well as in MRI over a 24 hour-period. Histological workup of the liver also revealed content of iron oxide particles in the reticuloendothelial system. Adjacent in vitro studies incubating hepatogenic HuH7 cells with the particles showed a rapid intracellular accumulation, clearly detectable by fluorescence microscopy and MRI. In conclusion our modified nanoparticle is stable under in vitro and in vivo conditions and is applicable for multimodal molecular imaging. Cellular labeling with this particle is possible and might help to get new insights into understanding the process of cell transplantation.
Read More
Hypothermia induced endothelial dysfunction
Stacks Image 25633
Antje Diestel's manuscript entitled "Tacrolimus and methylprednisolone prevent hypothermia induced endothelial dysfunction" has been accepted for publication in the Journal of Heart and Lung Transplantation. Co-authors are Nils Billecke, Joerg Roessler, Boris Schmitt, Silke Troeller, Ruth Schwartlander, Felix Berger, Igor Maximilian Sauer and Katharina Rose Luise Schmitt.
Hypothermia is used to preserve organs for transplant and it is the oldest method to protect organs during complex pediatric cardiac surgery. Loss of tissue function and tissue edema are common complications in children undergoing cardiac surgery and heart transplantation. The present study was designed to examine the effects of methylprednisolone (MP) and Tacrolimus (TAC) on endothelial cell function and morphology after deep hypothermia and rewarming. Human umbilical vein endothelial cells (HUVECs) were pretreated with MP and/orTAC and incubated either within a specially designed bioreactor or in monolayers. They were then exposed to a dynamic cooling and rewarming protocol. Immunocytochemistry, time lapse video microscopy within the SlideReactor bioreactor system, cell permeability and adherence assays and western blot analysis were performed. Confluent endothelial cells exposed to hypothermia displayed elongated cell shapes with intercellular gap formation, increased endothelial cell-layer permeability and loss in adherence. Upon rewarming, however, endothelial cell integrity was restored. Opening and closing of intercellular gaps was dependent on ERK 1/2 activation and connexin 43 (Cx43) expression. The combined treatment with MP and TAC inhibited these hypothermia-induced changes. These results suggest that MP and TAC inhibit hypothermia induced endothelial gap formation via pERK 1/2 inhibition and connexin 43 stabilization. Application of combined drugs that affect multiple targets may therefore be considered as a possible new therapeutic strategy to prevent endothelial dysfunction after hypothermia and rewarming.
Read More
Imaging of human hepatocytes via MPIO and MRI
Stacks Image 25714
Nathanel Raschzok's and Haluk Morgül's manuscript entitled "Imaging of Primary Human Hepatocytes Using Micron-Sized Iron Oxide Particles and Clinical Magnetic Resonance Tomography" has been accepted for publication in the Journal of Cellular and Molecular Medicine (impact factor: 6,55). Authors are Nathanael Raschzok, Mehmet H. Morgul, Jens Pinkernelle, Florian W.R. Vondran, Nils Billecke, Nora N. Kammer, Gesine Pless, Michaela K. Adonopoulou, Christian Leist, Lars Stelter, Ulf Teichgraber, Ruth Schwartlander and Igor M. Sauer. Nathanael Raschzok and Mehmet Haluk Morgul contributed equally to this work. The contribution of Ruth Schwartländer has to be emphasised as well. Transplantation of primary human hepatocytes is a promising approach in certain liver diseases. For visualisation of hepatocytes during and following cell application and the ability of a timely response to potential complications, a non-invasive modality for imaging of the transplanted cells has to be established. The aim of this study was to label primary human hepatocytes with micron-sized iron oxide particles (MPIOs), enabling the detection of cells by clinical magnetic resonance imaging (MRI). Primary human hepatocytes isolated from 13 different donors were used for labelling experiments. Following dose finding studies, hepatocytes were incubated with 30 particles/cell for 4 hours in adhesion culture. Particle incorporation was investigated via light, fluorescence and electron microscopy and labelled cells were fixed and analysed in an agarose suspension by a 3.0 Tesla MR scanner. Hepatocytes were enzymatically resuspended and analysed during a five-day reculture period for viability, total protein, enzyme leakage (AST, LDH) and metabolic activity (urea, albumin). A mean uptake of 18 particles/cell could be observed, and primary human hepatocytes were clearly detectable by MR instrumentation. The particle load was not affected by resuspension and showed no alternations during the culture period. Compared to control groups, labelling and resuspension had no adverse effects on viability, enzyme leakage and metabolic activity of human hepatocytes. Conclusion: The feasibility of preparing MPIO-labelled primary human hepatocytes detectable by clinical MR equipment was shown in vitro. MPIO-labelled cells could serve for basic research and quality control in the clinical setting of human hepatocyte transplantation.
Read More
 Page 1 / 1 

Archive


Categories

Year

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.