News

Dr. med. Martin Kluge
Stacks Image 14166
Martin Kluge is wearing excellent suits and successfully defended his doctoral thesis magna cum laude! He examined the effects of the magnetic field of magnetic resonance imaging (MRI) systems on cells labeled with micrometer-sized iron oxide particles.

Congratulations!

Read More
Cytokine production of human CD4+ memory T cells
Stacks Image 14013
Nature Communication accepted the manuscript "Progressive expression of killer-like receptors and GPR56 defines the cytokine production of human CD4+ memory T cells" for publication. Authors are Kim-Long Truong, Stephan Schlickeiser, Katrin Vogt, David Boës, Katarina Stanko, Christine Appelt, Mathias Streitz, Gerald Grütz, Nadja Stobutzki, Christian Meisel, Christina Iwert, Stefan Tomiuk, Julia Polansky, Andreas Pascher, Nina Babel, Ulrik Stervbo, Igor Sauer, Undine Gerlach, and Birgit Sawitzki.

All memory T cells mount an accelerated response on antigen reencouter, but significant functional heterogeneity is present within the respective memory T cell subsets as defined by CCR7 and CD45RA expression, thereby warranting further stratification. Here we show that several surface markers, KLRB1, KLRG1, GPR56 and KLRF1, help define “low”, “high” or “exhausted” cytokine producers within human peripheral and intra-hepatic CD4+ memory T cells. Highest simultaneous production of TNF and IFN-γ is observed in KLRB1+KLRG1+GPR56+ CD4 T cells. By contrast, KLRF1 expression is associated with reduced TNF/IFN-γ production and T cell exhaustion. Lastly, TCRbeta repertoire analysis and in vitro differentiation support a regulated, successive expression for these markers during CD4+ memory T cell differentiation. Our results thus help refine the classification of human memory T cells to provide insights on inflammatory disease progression and immunotherapy development.
Read More
Critical Care for Potential Liver Transplant Candidates
Stacks Image 14220
The book Critical Care for Potential Liver Transplant Candidates
(D. Bezinover and F. Saner [Eds.]) focuses on patients with end-stage-liver disease (ESLD) who could possibly qualify for liver transplant. This patient cohort raises many problems: who should be treated and also, when is it too late for transplant? The authors are all dedicated experts in the field of ESLD/liver transplantation, but from different disciplines with different views of the problem.
In the past 15 years many things have changed in the treatment for these patients: cardiac assessment, treatment of porto-pulmonary hypertension, hemodynamics, coagulation assessment and management, diagnosis of kidney failure, and the timing of dialysis. These issues are comprehensively discussed in this book, in order to provide physicians starting in the field of transplantation an overview of different areas of concern.
This book is aimed at specialists and trainees in critical care, hepatology, anesthesia, surgery, and nephrology.

N. Raschzok, K.H. Hillebrandt and I.M. Sauer contributed with the chapter "Liver Assist Systems for Bridging to Transplantation: Devices and Concepts".

More information via this link.
Read More
DFG grant for Linda Feldbrügge
Dr. Linda Feldbrügge receives a research grant from the Deutsche Forschungsgemeinschaft (DFG) for her project "Purinergic regulation of inflammation in liver fibrosis by ectonucleoside triphosphate diphosphohydrolase-3 (ENTPD3)“.

ENTPD3, expressed by macrophages and various other cell types, modulates inflammation and tissue regeneration by scavenging extracellular ATP and ADP. As demonstrated by her preliminary work, ENTPD3 appears to play a deleterious role in liver fibrosis. Her new project aims to define the mechanisms of ENTPD3 mediated modulation of macrophage function and regulation of liver fibrosis, and test their relevance in human liver fibrosis.

Stacks Image 14113
Read More
Dr. med. Antje Butter
Stacks Image 14175
Today, Antje Butter successfully defended her doctoral thesis magna cum laude!
Congratulations!

Antje was involved in basic research with respect to liver decellularization and recellularization. A proprietary, customized bioreactor was established to repopulate decellularized rat livers with primary rat hepatocytes via the hepatic artery and to subsequently evaluate graft morphology and function during 7 days of ex vivo perfusion. More information via this link.
Read More
Percoll purification after isolation of Primary Human Hepatocytes
Stacks Image 14154
The manuscript "Isolation of Primary Human Hepatocytes: Is Percoll Purification Really Necessary?" was accepted for publication in Scientific Reports.
Authors are Rosa Horner, Jospeh G.M.V. Gassner, Martin Kluge M, Peter Tang, Steffen Lippert, Karl H. Hillebrandt, Simon Moosburner, Anja Reutzel-Selke, Johann Pratschke, Igor M. Sauer and Nathanael Raschzok.

Research and therapeutic applications create a high demand for primary human hepatocytes. The limiting factor for their utilization is the availability of metabolically active hepatocytes in large quantities. Centrifugation through Percoll, which is commonly performed during hepatocyte isolation, has so far not been systematically evaluated in the scientific literature. 27 hepatocyte isolations were performed using a two-step perfusion technique on tissue obtained from partial liver resections. Cells were seeded with or without having undergone the centrifugation step through 25% Percoll. Cell yield, function, purity, viability and rate of bacterial contamination were assessed over a period of 6 days. Viable yield without Percoll purification was 42.4 x 106 (SEM ± 4.6 x 106) cells/g tissue. An average of 59% of cells were recovered after Percoll treatment. There were neither significant differences in the functional performance of cells, nor regarding presence of non-parenchymal liver cells. In five cases with initial viability of <80%, viability was significantly increased by Percoll purification (71.6 to 87.7%, p=0.03). Considering our data and the massive cell loss due to Percoll purification, we suggest that this step can be omitted if the initial viability is high, whereas low viabilities can be improved by Percoll centrifugation.
Read More
Critical Care for Potential Liver Transplant Candidates
Stacks Image 14130
The book Critical Care for Potential Liver Transplant Candidates
(D. Bezinover and F. Saner [Eds.]) focuses on patients with end-stage-liver disease (ESLD) who could possibly qualify for liver transplant. This patient cohort raises many problems: who should be treated and also, when is it too late for transplant? The authors are all dedicated experts in the field of ESLD/liver transplantation, but from different disciplines with different views of the problem.
In the past 15 years many things have changed in the treatment for these patients: cardiac assessment, treatment of porto-pulmonary hypertension, hemodynamics, coagulation assessment and management, diagnosis of kidney failure, and the timing of dialysis. These issues are comprehensively discussed in this book, in order to provide physicians starting in the field of transplantation an overview of different areas of concern.
This book is aimed at specialists and trainees in critical care, hepatology, anesthesia, surgery, and nephrology.

N. Raschzok, K.H. Hillebrandt and I.M. Sauer contributed with the chapter "Liver Assist Systems for Bridging to Transplantation: Devices and Concepts".

More information via this link.
Read More
Matters of Activity. Image Space Material
Stacks Image 14097
Prof. I.M. Sauer and Prof. J. Pratschke became principal investigators in the new Cluster of Exzellence Matters of Activity. Image Space Material. This Cluster will explore materials’ own inner activity, which can be discovered as a new source of innovative strategies and mechanisms for rethinking the relationship between the analog and the digital and for designing more sustainable and energy-efficient technologies.
The project’s central vision is to develop images, spaces, and materials as active structures of a new physical and symbolic reality, in which nature and culture intertwine in a novel way. In this context, interdisciplinary research and development of sustainable processes and structures is a key priority in all areas of visual-material character, such as wearables, materials technology, medical technology, logistics, architecture, and robotics. More than 40 disciplines are systematically investigating design strategies for materials and structures that adapt to specific requirements and the environment. The cluster relies on a new role for design within the context of growing diversity and the continuous improvement of materials and forms of visualization in all disciplines.
Read More
Composite tissue allotransplantation: opportunities and challenges
Stacks Image 14076
"Composite tissue allotransplantation: opportunities and challenges" is available in Cellular & Molecular Immunology (Cell Mol Immunol. 2019 Mar 6. doi: 10.1038/s41423-019-0215-3. [Epub ahead of print]). Authors are J. Iske, Y. Nian, R. Maenosono, M. Maurer, I.M. Sauer & S.G. Tullius.

Vascularized composite allotransplants (VCAs) have unique properties because of diverse tissue components transplanted en mass as a single unit. In addition to surgery, this type of transplant also faces enormous immunological challenges that demand a detailed analysis of all aspects of alloimmune responses, organ preservation, and injury, as well as the immunogenicity of various tissues within the VCA grafts to further improve graft and patient outcomes. Moreover, the side effects of long-term immunosuppression for VCA patients need to be carefully balanced with the potential benefit of a non-life-saving procedure. In this review article, we provide a comprehensive update on limb and face transplantation, with a specific emphasis on the alloimmune responses to VCA, established and novel immunosuppressive treatments, and patient outcomes.
Read More
Human stem cells promote liver regeneration after partial hepatectomy
Stacks Image 14057
"Human Stem Cells Promote Liver Regeneration After Partial Hepatectomy in BALB/C Nude Mice" will be published in J Surg Res. 2019 (Mar 4;239:191-200. doi: 10.1016/j.jss.2019.02.010. [Epub ahead of print]).
Authors are S. Wabitsch, Ch. Benzing, F. Krenzien, K. Splith, P.K. Haber, A. Arnold, M. Nösser, C. Kamalia, F. Hermann, Ch. Günther, D. Hirsch, I.M. Sauer, J. Pratschke, and M. Schmelzle.

Mesenchymal stem cells (MSCs) have been suggested to augment liver regeneration after surgically and pharmacologically induced liver failure. To further investigate this we processed human bone marrow-derived MSC according to good manufacturing practice (GMP) and tested those cells for their modulatory capacities of metabolic alterations and liver regeneration after partial hepatectomy in BALB/c nude mice.

Human bone marrow-derived MSC attenuate metabolic alterations and improve liver regeneration after partial hepatectomy in BALB/c nude mice. Obtained results using GMP-processed human MSC suggest functional links between fat accumulation and hepatocyte proliferation, without any evidence for cellular homing. This study using GMP-proceeded MSC has important regulatory implications for an urgently needed translation into a clinical trial.
Read More
Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI
Stacks Image 14084
"Diffusion-weighted magnetic resonance imaging using a preclinical 1 T PET/MRI in healthy and tumor-bearing rats" was published in EJNMMI Res. 2019 Feb 22;9(1):21. doi: 10.1186/s13550-019-0489-6.
Authors are J. Albrecht, D. Polenz, A.A. Kühl, J.M.M. Rogasch, A. Leder, I.M. Sauer, M. Babos, G. Mócsai, N. Beindorff, I.G. Steffen, W. Brenner, and E.J. Koziolek.

Hybrid positron emission tomography and magnetic resonance imaging (PET/MRI) scanners are increasingly used for both clinical and preclinical imaging. Especially functional MRI sequences such as diffusion-weighted imaging (DWI) are of great interest as they provide information on a molecular level, thus, can be used as surrogate biomarkers. Due to technical restrictions, MR sequences need to be adapted for each system to perform reliable imaging. There is, to our knowledge, no suitable DWI protocol for 1 Tesla PET/MRI scanners.
We established a respiratory-gated DWI protocol for a preclinical 1 T PET/MRI scanner allowing to monitor growth-related changes in ADC values of orthotopic HCC liver tumors. By monitoring the changes in tumor ADCs over time, different cellular stages were described. However, each study needs to adapt the protocol further according to their question to generate best possible results.
Read More
Charité Digital Clinician Scientist Pilot Program (D-CSP)
The Deutsche Forschungsgemeinschaft (DFG) will fund the Charité Digital Clinician Scientist Pilot Program (D-CSP). The ideas is to improve and safeguard the current BIH Charité Clinician Scientist Program by building an additional structure for a novel “digital science” driven career track to prepare academic clinicians for the challenges of the emerging technological transformation of medicine.
Stacks Image 14108
Designated Spokesperson is Prof. Dr. Duska Dragun. Co-applicants are the NeuroCure Cluster of Excellence, Department of Experimental Neurology, Department of Pediatric Oncology and Hematology, Department of Radiology and Pediatric Radiology, Department of Surgery, Berlin Institute for Medical Systems Biology (BIMSB), Institute of Medical Biometrics and Clinical Epidemiology, Department of Neurology and Experimental Neurology, and the Department of Anesthesiology and Intensive Care Medicine.

With the changing dynamics in biomedical research having fully entered into the digital era, it is becoming increasingly clear after seven years of experience that we need more dedicated efforts to create opportunities by establishing stronger interfaces with physics, mathematics, systems biology, and computational sciences for future generations of Clinician Scientists. The newly proposed research and educational structure for integrating these new areas of expertise into the established CSP should act as a “central processing unit” to facilitate biomedical knowledge derived from a variety of clinical disciplines supported by leading technology experts to address the specific challenges of data-driven medicine in the future.

  • Precision medicine in cancer and beyond,
  • Systems biology,
  • Big data science and decision support systems,
  • Quantitative imaging,
  • Computational neuroscience and brain simulation, and
  • Augmented, mixed and virtual reality in surgery
are exemplary research topics highlight how applicants will interact with Digital Clinician Scientists to develop their skills in giving prognoses, optimizing delivery of care, and personalizing patient management and therapeutic choices.
Read More
SFB 1365 Renoprotection
Stacks Image 13929
The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is establishing ten new Collaborative Research Centres (CRCs, Sonderforschungsbereich, SFB) to further support top-level research in Germany.
Chronic kidney diseases and acute kidney damage are widespread and reduce the life expectancy of those affected. The CRC “Renoprotection” therefore aims to decode specific signalling pathways for kidney damage and develop new approaches to treatment in the long term (Charité Berlin – FU Berlin and HU Berlin, Spokesperson: Prof. Dr. Pontus Börje Persson).
With the project "Renoprotective role of Lipocalin-2 in allograft rejection following kidney transplantation" Priv.-Doz. Dr. Felix Aigner and Dr. Muhammad Imtiaz Ashraf, PhD will be part of this SFB/CRC!

To provide allograft renoprotection, novel strategies are needed, including (i) prevention of renal allograft IRI and (ii) targeted immunosuppression and thus; reduction and avoidance of steroid and CNI usage in the long-run. Using a mouse model of kidney transplantation, we recently demonstrated a renoprotective role of exogenously administered recombinant Lcn2:Siderophore:Fe complex (rLcn2). The rLcn2 mediated mechanism of allograft renoprotection is still unknown; however, the mechanistic insight is essential for comprehensive translation of the rLcn2 therapy into clinical practice. In the funded project, we aim at (i) understanding the route and mechanisms of immunoregulation and/or cytoprotection, mediated by exogenously administered rLcn2 during the allograft damage; and (ii) characterizing the source and nature of endogenous Lcn2 i.e. whether it is complexed with mammalian iron binding catechols and may contribute to allograft survival in the long-run. Our ultimate goal is to pave the way for transplant renoprotection via recombinant Lcn2.

More information…
Read More
Comparison of AR HMDs in Visceral Surgery
Stacks Image 14052
"Real World Usability Analysis of two Augmented Reality Headsets in Visceral Surgery" was accepted for publication in Artificial Organs. Authors are S. Moosburner, C. Remde, P. Tang, M. Queisner, N. Haep, J. Pratschke, and I.M. Sauer.

Recent developments in the field of augmented reality (AR) have enabled new use cases in surgery. Initial set-up of an appropriate infrastructure for maintaining an AR surgical workflow requires investment in appropriate hardware. We compared the usability of the Microsoft HoloLens and Meta 2 head mounted displays (HMDs). Fifteen medicine students tested each device and were questioned with a variant of the System Usability Scale (SUS). Two surgeons independently tested the devices in an intraoperative setting.
In our adapted SUS, ergonomics, ease of use and visual clarity of the display did not differ significantly between HMD groups. The field of view (FOV) was smaller in the Microsoft HoloLens than the Meta 2 and significantly more study subjects (80% vs. 13.3%; p < 0.001) felt limited through the FOV. Intraoperatively, decreased mobility due to the necessity of an AC adapter and additional computing device for the Meta 2 proved to be limiting. Object stability was rated superior in the Microsoft HoloLens than the Meta 2 by our surgeons and lead to increased use.
We examined the Meta 2 and the Microsoft HoloLens and found key advantages in the Microsoft HoloLens which provided palpable benefits in a surgical setting.
Read More
Mathilde Feist and Paul Ritschl: Clinician Scientists
Stacks Image 13971
Dr. Mathilde Feist and Dr. Paul Ritschl successfully applied for the BIH Charité Clinician Scientist Program. Mathilde Feist will work on "Cytokine-armed oncolytic vaccinia virus for pancreatic cancer therapy". Mentors are Prof. Bahra, Prof. Sauer and Prof. Beling.
Paul Ritschl focusses on "The Impact of Donor Derived Microparticles Following Solid Organ Transplantation". Mentors are Priv.-Doz. Dr. Schmelzle and Priv.-Doz Dr. Öllinger.
Read More
Nanomolar sensing of NAD
Stacks Image 13905
"The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids." was published in Nature Scientific Reports.
Authors are P. Brunnbauer, A. Leder, C. Kamali, K. Kamali, E. Keshi, K. Splith, S. Wabitsch, P. Haber, G. Atanasov, L. Feldbrügge, I.M. Sauer, J. Pratschke, M. Schmelzle, and F. Krenzien.

Nicotinamide adenine dinucleotide (NAD), a prominent member of the pyridine nucleotide family, plays a pivotal role in cell-oxidation protection, DNA repair, cell signalling and central metabolic pathways, such as beta oxidation, glycolysis and the citric acid cycle. In particular, extracellular NAD+ has recently been demonstrated to moderate pathogenesis of multiple systemic diseases as well as aging. Herein we present an assaying method, that serves to quantify extracellular NAD+ in human heparinised plasma and exhibits a sensitivity ranging from the low micromolar into the low nanomolar domain. The assay achieves the quantification of extracellular NAD+ by means of a two-step enzymatic cycling reaction, based on alcohol dehydrogenase. An albumin modified revised simulated body fluid was employed as standard matrix in order to optimise enzymatic activity and enhance the linear behaviour and sensitivity of the method. In addition, we evaluated assay linearity, reproducibility and confirmed long-term storage stability of extracellular NAD+ in frozen human heparinised plasma. In summary, our findings pose a novel standardised method suitable for high throughput screenings of extracellular NAD+ levels in human heparinised plasma, paving the way for new clinical discovery studies.
Read More
Normothermic ex vivo machine perfusion
Stacks Image 12821
"Improvement of normothermic ex vivo machine perfusion of rat liver grafts by dialysis and Kupffer Cell inhibition with glycine" was accepted for publication in Liver Transplantation.
Authors are J. Gassner, M. Nösser, S. Moosburner, R. Horner, P. Tang, L. Wegener, D. Wyrwal, F. Claussen, R. Arsenic, J. Pratschke, I.M. Sauer, and N. Raschzok.

Normothermic ex vivo liver machine perfusion might be a superior preservation strategy for liver grafts from extended criteria donors. However, standardized small animal models are not available for basic research on machine perfusion of liver grafts. A laboratory-scaled perfusion system was developed consisting of a custom-made perfusion chamber, a pressure-controlled roller pump, and an oxygenator. Male Wistar rat livers were perfused via the portal vein for 6 hours using oxygenated culture medium supplemented with rat erythrocytes. A separate circuit was connected via a dialysis membrane to the main circuit for plasma volume expansion. Glycine was added to the flush solution, the perfusate, and the perfusion circuit. Portal pressure and transaminase release were stable over the perfusion period. Dialysis significantly decreased the potassium concentration of the perfusate and led to significantly higher bile and total urea production. Hematoxylin and eosin staining and immunostaining for ssDNA and activated caspase 3 showed less sinusoidal dilatation and tissue damage in livers treated with dialysis and glycine. While Kupffer cells were preserved, tumor necrosis factor α mRNA levels were significantly decreased by both treatments. For proof of concept, the optimized perfusion protocol was tested with DCD grafts, resulting in significantly lower transaminase release into the perfusate and preserved liver architecture compared to baseline perfusion.
Our laboratory-scale normothermic portovenous ex vivo liver perfusion system enables rat liver preservation for 6 hours. Both dialysis and glycine treatment were shown to be synergistic for preservation of the integrity of normal and DCD liver grafts.
Read More
Hendrik Napierala defended his thesis summa cum laude
Today, Hendrik Napierala defended his thesis "Rebesiedlung dezellularisierter Rattenpankreata mit Langerhans-Inseln" summa cum laude!

Congratulations !
Read More
Tumor-stromal cross-talk in PDAC
Stacks Image 13791
Hepatobiliary Pancreat Dis Int accepted the manuscript "Tumor-stromal cross-talk modulating the therapeutic response in pancreatic cancer" for publication. Authors are C.C.M. Neumann, E. von Hörschelmann, A. Reutzel-Selke, E. Seidel, I.M. Sauer, J. Pratschke, M. Bahra, and R.B.Schmuck.

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant solid tumor with a dismal prognosis. The stroma component makes up to 90% of the tumor mass and is thought to be one of the main reasons for the tumor's high chemoresistance. Cancer associated fibroblasts (CAFs) have previously been identified to be the key stromal players. This is the first time we provide detailed in vitro experiments investigating tumor-stromal interactions when exposed to three well-known chemotherapeutic agents.
Monocultures, indirect and direct co-cultures of two PDAC cell lines (AsPC and Panc-1) and six primary patients derived CAFs were treated with gemcitabine, nab-paclitaxel and the γ-secretase-inhibitor (GSI) DAPT. The cell viability of each component was measured with XTT. Finally, IL-6 concentrations of the supernatants were analyzed.
On the contrary to PDAC cell lines, CAF monocultures hardly responded to any treatment which suggested that stroma (CAFs) itself is more resistant to standard chemo-treatments than the epithelial cancer cells. Moreover, only a weak chemotherapeutic response was observed in direct co-cultures of cancer cells with CAFs. A change in the morphology of direct co-cultures was accompanied with the chemoresistance. CAFs were observed to build cage-like structures around agglomerates of tumor cells. High levels of IL-6 were also associated with a reduced response to therapy. Indirect co-cultures make the tumor-stromal interaction more complex.
Read More
Prof. Marcus Bahra Charité W2 professor
Stacks Image 13954
Prof. Dr. Marcus Bahra was appointed as a W2 professor for Pancreato-Biliary Surgery at the Charité – Universitätsmedizin Berlin. Working with other specialists, his team provides treatment for patients with malignancies and diseases in the pancreas and bile duct and conducts research in this field.
Since 2014 he held an extraordinary professorship for Surgery at the Charité.
Read More
Wibke Schulte: BIH Charité Clinician Scientist
Stacks Image 11162
Dr. med. Wibke Schulte successfully applied for the BIH Charité Clinician Scientist Program with her project „Die Rolle von MIF in der humanen akuten Peritonitis | Role of MIF in human acute peritonitis“. Mentors are Priv.-Doz. Dr. med. Felix Aigner and Prof. Dr. Igor M. Sauer.
Read More
Isolation of primary human hepatocytes & LiMax-test
Stacks Image 11183
Tissue Engineering (Part C: Methods) accepted our paper entitled "The predictive value of the LiMAx-test for the isolation of primary human hepatocytes".
Authors are R.D. Major, M. Kluge, M. Jara, M. Nösser, R. Horner, J. Gassner, B. Struecker, P. Tang, S. Lippert, A. Reutzel-Selke, D. Geisel, T. Denecke, M. Stockmann, J. Pratschke, I.M. Sauer, and N. Raschzok.

The need for primary human hepatocytes is constantly growing, for basic research as well as for therapeutic applications. However, the isolation outcome strongly depends on the quality of liver tissue, and we are still lacking a preoperative test that allows the prediction of the hepatocyte isolation outcome. Here we evaluated the “maximal liver function capacity test” (LiMAx) as predictive test for the quantitative and qualitative outcome of hepatocyte isolation. This test is already used in clinical routine to measure preoperative and to predict postoperative liver function.
The patient’s preoperative mean LiMAx was obtained from the patient records and preoperative CT and MRI images were used to calculate the whole liver volume in order to adjust the mean LiMAx. The outcome parameters of the hepatocyte isolation procedures were analyzed in correlation with the adjusted mean LiMAx.
Primary human hepatocytes were isolated from partial hepatectomies (n=64).
From these 64 hepatectomies we included 48 to our study and correlated their isolation outcome parameters with volume corrected LiMAx values. From a total of 11 hepatocyte isolation procedures, metabolic parameters (albumin, urea and aspartate aminotransferase) were assessed during the hepatocyte cultivation period of 5 days. The volume adjusted mean LiMAx showed a significant positive correlation with the total cell yield (p= 0.049;r= 0.242;n= 48). The correlations of volume adjusted LiMAx values with viable cell yield and cell viability did not reach statistical significance. A sub-group analysis of isolations from patients with colorectal metastasis revealed a significant correlation between volume adjusted mean LiMAx and total cell yield (p= 0.012;r= 0.488;n= 21) and viable cell yield (p=0.034;r=0.405;n=21). Whereas a sub-group analysis of isolations of patients with carcinoma of the biliary tree showed significant correlations of volume adjusted mean LiMAx with cell viability (r= 0.387;p= 0.046;n=20) and lacked significant correlations with total cell yield (r= - 0.060;p= 0.401;n=20) and viable cell yield (r= 0.012;p= 0.480;n=20). The volume-adjusted mean LiMAx did not show a significant correlation with any of the metabolic parameters. In conclusion, the LiMAx-test might be a useful tool to predict the quantitative outcome of hepatocyte isolation, as long as underlying liver disease is taken into consideration.
Read More
Barbara Kern: BIH Charité Clinician Scientist
Stacks Image 11194
Dr. Barbara Kern successfully applied for the BIH Charité Clinician Scientist Program. With her project "Novel Treatment and Diagnostic Approaches Utilizing the Role of Dendritic Cells in Immune Responsivness" Barbara will be engaged in our Vascular Tissue Allotransplantation Initiative (Project VCA). The Clinician Scientist Program is a modern career pathway within academic medicine that allows physicians to pursue a structured residency with time set aside for clinical and basic research. At the end of the program, participants will have completed their residency and, ideally, their postdoctoral teaching qualification (Habilitation). The program is intended to produce a new generation of scientists with translational training who will help speed up the rate at which scientific findings are translated into application.
Read More
Future Medicine 2017
Stacks Image 11202
What’s trending? What’s new in health science? To find out, please save the date for the second Future Medicine in Berlin on November 7, 2017. Tagesspiegel and Berlin Institute of Health, together with Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, will feature outstanding international scientists, great visions of the future of medicine, and an exceptional concentration of knowledge. The four sessions of Future Medicine 2017 will be: 

Digital Health and Big Data
Precision Medicine and Predictive Models
Cell and Gene Therapies
Stem Cells and Human Disease Modeling  

Simon Moosburner, a student of medicine interested in regenerative medicine and future technologies, will talk about “Virtual & Mixed Reality: The Next Milestone in Surgery?” at Future Medicine 2017.
Read More
21. Chirurgischen Forschungstage
Stacks Image 11217
The 21. Chirurgische Forschungstage took place in Cologne. Five of our students gave terrific presentations: S. Moosburner gave an oral presentation on „Steatotic Liver Transplantation – a Growing Problem with Severe Complications“, H. Everwien on „Different biological scaffolds as a platform for engineering an endocrine Neo-Pancreas by using decellularization and recellularization techniques“, M. Noesser on „A comprehensive description of the development of a stable closed circuit for ex vivo rat liver machine perfusion“, R. Horner on „Is Percoll purifcation necessary for isolation of primary human hepatocytes?“, and N. Seiffert on „Recellularization of Decellularized Bovine Carotid Arteries using Human Endothelial Progenitor Cells: One Step towards an Autologous Bypass Graft“.
Read More
ESOT The Future of Transplantation
Stacks Image 11233
The ESOT YPT Workshop and its Presidential Debate gives you a chance to engage with a variety of speakers in a lively ‘town hall’ format, as well as connecting with other young transplant professionals from around the world. The session will begin with talks from three key presenters on the past, present, and future of transplantation and open Q&As with each presenter. 

09:00– 10:35 - The future of transplantation: 3 lectures on Past, Present and Future CHAIRS: Alice Koenig, Lyon, France   Thomas Resch, Innsbruck, Austria
09:05 Lecture: The future of transplantation - Historical Perspective Sir Roy Calne, Cambridge, United Kingdom 09:25 Open Q&A with Roy Calne
09:35 Lecture: The future of transplantation - Present perspective Jan Lerut, Brussels, Belgium 09:55 Open Q&A with Jan Lerut
10:05 Lecture: The future of transplantation - Future perspective  Igor Sauer, Berlin, Germany
10:25 Open Q&A with Igor Sauer
Read More
Mixed Reality in Visceral Surgery
Stacks Image 11243
Annals of Surgery accepted our manuscript "Mixed Reality in visceral surgery - Development of a suitable workflow and evaluation of intraoperative use-cases" for publication. The paper evaluates the application of a mixed reality (MR) head-mounted display (HMD) for the visualization of anatomical structures in complex visceral-surgical interventions. A workflow was developed and technical feasibility was evaluated. 
Medical images are still not seamlessly integrated into surgical interventions and thus, remain separated from the surgical procedure. Surgeons need to cognitively relate two-dimensional sectional images to the three-dimensional (3D) during the actual intervention. MR applications simulate 3D images and reduce the offset between working space and visualization allowing for improved spatial-visual approximation of patient and image. The surgeon’s field of vision was superimposed with a 3D-model of the patient’s relevant liver structures displayed on a MR-HMD. This set-up was evaluated during open hepatic surgery. A suitable workflow for segmenting image masks and texture mapping of tumors, hepatic artery, portal vein and the hepatic veins was developed. The 3D model was positioned above the surgical site. Anatomical reassurance was possible simply by looking up. Positioning in the room was stable without drift and minimal jittering. Users reported satisfactory comfort wearing the device without significant impairment of movement. MR technology has high potential to improve the surgeon’s action and perception in open visceral surgery by displaying 3D anatomical models close to the surgical site. Superimposing anatomical structures directly onto the organs within the surgical site remains challenging since the abdominal organs undergo major deformations due to manipulation, respiratory motion and the interaction with the surgical instruments during the intervention. A further application scenario would be intraoperative ultrasound examination displaying the image directly next to the transducer. Displays and sensor-technologies as well as biomechanical modeling and object-recognition algorithms will facilitate the application of MR-HMD in surgery in the near future. Authors are I.M. Sauer, M. Queisner, P. Tang, S. Moosburner, O. Hoepfner, R. Horner, R. Lohmann and J. Pratschke.
Read More
Cells isolated from diseased explanted livers
Stacks Image 11263
The International Journal of Artificial Organs (official journal of the European Society for Artificial Organs [ESAO]) published our paper on Isolation, characterization and cold storage of cells isolated from diseased explanted livers. Authors are Belaschk E, Rohn S, Mukiibi R, Reutzel-Selke A, Tang P, Sawitzki B, Pratschke J, Sauer IM and Mogl MT.

Livers discarded after standard organ retrieval are commonly used as a cell source for hepatocyte transplantation. Due to the scarcity of organ donors, this leads to a shortage of suitable cells for transplantation. Here, the isolation of liver cells from diseased livers removed during liver transplantation is studied and compared to the isolation of cells from liver specimens obtained during partial liver resection. Hepatocytes from 20 diseased explanted livers (Ex-group) were isolated, cultured and stored at 4°C for up to 48 hours, and compared to hepatocytes isolated from the normal liver tissue of 14 liver lobe resections (Rx-group). The nonparenchymal cell fraction (NPC) was analyzed by flow cytometry to identify potential liver progenitor cells, and OptiPrep™ (Sigma-Aldrich) density gradient centrifugation was used to enrich the progenitor cells for immediate transplantation. There were no differences in viability, cell integrity and metabolic activity in cell culture and survival after cold storage when comparing the hepatocytes from the Rx-group and the Ex-group. In some cases, the latter group showed tendencies of increased resistance to isolation and storage procedures. The NPC of the Ex-group livers contained considerably more EpCAM+ and significantly more CD90+ cells than the Rx-group. Progenitor cell enrichment was not sufficient for clinical application. Hepatocytes isolated from diseased explanted livers showed the essential characteristics of being adequate for cell transplantation. Increased numbers of liver progenitor cells can be isolated from diseased explanted livers. These results support the feasibility of using diseased explanted livers as a cell source for liver cell transplantation.
Read More
ECRT - Advanced Scientist Grant
Stacks Image 11273
PD Dr. Nathanael Raschzok receives one of the 2017 Einstein Center for Regenerative Therapies (ECRT) Kickbox – Advanced Scientist Grant.
Einstein Center for Regenerative Therapies Kickbox – advanced scientist grant. The project is entitled „Overcoming steatotic compromise – Reconstitution of endogenous repair in severely steatotic liver grafts by metabolic reconditioning“. The project will be conducted by Nathanael Raschzok, Angelika Kusch, Duska Dragun, and Igor M. Sauer.

In order to stimulate excellent and creative research ideas that might take regenerative therapies a vital step forward, the Einstein Center offers a special two-stage funding scheme. At first, the Kickbox seed grant provides a great framework to investigate initial ideas and to develop sound research concepts. Subsequently, the flexible funds enable the realisation of projects that evolved from the Kickbox initiation phase in order to reach the scientific goals of the Einstein Center. Congratulations!
Read More
Magnetic field and cells labeled with IO particles
Stacks Image 11283
Our paper entitled "The magnetic field of magnetic resonance imaging systems does not affect cells labeled with micrometer-sized iron oxide particles," has been accepted for publication in Tissue Engineering, Part C: Methods. Authors are Martin Kluge, Annekatrin Leder, Karl H. Hillebrandt, Benjamin Struecker, Dominik Geisel, Timm Denecke, Rebeka D. Major, Anja Reutzel-Selke, Peter Tang, Steffen Lippert, Christian Schmidt, Johann Pratschke, Igor M. Sauer, and Nathanael Raschzok.

Labeling using iron oxide particles enables cell tracking via magnetic resonance imaging (MRI). However, the magnetic field can affect the particle-labeled cells. Here, we investigated the effects of a clinical MRI system on primary human hepatocytes labeled using micrometer-sized iron oxide particles (MPIOs).  HuH7 tumor cells were incubated with increasing concentrations of biocompatible, silica-based, micron-sized iron oxide-containing particles (sMPIO; 40 – 160 particles/cell). Primary human hepatocytes were incubated with 100 sMPIOs/cell. The particle-labeled cells and the native cells were imaged using a clinical 3.0-T MRI system, whereas the control groups of the labeled and unlabeled cells were kept at room temperature without exposure to a magnetic field. Viability, formation of reactive oxygen species, aspartate aminotransferase leakage, and urea and albumin synthesis were assessed over a culture period of 5 days. 
The dose finding study showed no adverse effects of the sMPIO labeling on HuH7 cells. MRI had no adverse effects on the morphology of the sMPIO-labeled primary human hepatocytes. Imaging using the T1- and T2-weighted sequences did not affect the viability, transaminase leakage, formation of reactive oxygen species, or metabolic activity of the sMPIO-labeled cells or the unlabeled, primary human hepatocytes. sMPIOs did not induce adverse effects on the labeled cells under the conditions of the magnetic field of a clinical MRI system.
Read More
Charité BIH Entrepreneurship Summit
Stacks Image 11295

The Charité BIH Entrepreneurship Summit is a preeminent international cross-disciplinary forum for sharing and exploring the most important discoveries and emerging trends influencing the future of healthcare around the world.

Every year in May over 400 global leaders in healthcare innovation, including entrepreneurs, scientists, physicians, investors, policymakers, and business leaders convene at the Charité BIH Entrepreneurship Summit in the vibrant German capital of Berlin. We offer our participants a one-of-a-kind opportunity to meet with world-class specialists working at Charité & MDC, to build relationships with prominent international partners and experts working in the healthcare industry, and to help grow businesses.

This year's 10th Charité Entrepreneurship Summit will again take place at the Berlin-Brandenburg Academy of Sciences and Humanities on May 8 - 9, 2017. The Summit is significantly supported by the Berlin Institute of Health and focusses on 'Global Challenges of Healthcare'. Israel will be the official partner country for the Summit 2017. We are looking forward to learning more about the Israeli innovation & start-up culture, funding opportunities and challenges in Healthcare.

The Summit's two-day agenda will address a wide variety of topical issues including change of innovation culture, healthy aging & degenerative diseases, virtual reality and mental health. In addition, the Summit will seek to engage participants in lively discussions about business, science and the intersection of the two. Startups and Entrepreneurs are invited to apply for the LifeSciences VentureMarket, a platform to present their companies to a pool of international angels, venture investors, and corporate funds at this year's Summit.

Read More
BIH Paper of the Month
Stacks Image 11305
Benjamin Strücker, Hendrik Napierala and the rest of the team were awarded with the BIH Paper of the Month for their publication on a new method for developing a transplantable endocrine Neo-Pancreas.

The BIH Paper of the Month is awarded by the BIH Board of Directors to honor a special publication achievement from the joint research space of Charité and MDC. The Paper of the Month is sponsored by the Stiftung Charité as part of its Johanna Quandt Private Excellence Initiative. 

H. Napierala, K.-H. Hillebrandt, N. Haep, P. Tang, M. Tintemann, J. Gassner, M. Noesser, H. Everwien, N. Seiffert, M. Kluge, E. Teegen, D. Polenz, S. Lippert, D. Geisel, A. Reutzel Selke, N. Raschzok, A. Andreou, J. Pratschke, I. M. Sauer & B. Struecker. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports 7. Article number: 41777 (2017) doi:10.1038/srep41777
Read More
ECRT Kickbox - Junior Scientist Grant
Stacks Image 11320
Karl Hillebrandt receives one of the 2017 Einstein Center for Regenerative Therapies (ECRT) Kickbox – Junior Scientist Grant. The project is entitled "Fighting liver cirrhosis? Establishment and analysis of decellularized human cirrhotic liver slices as a 3-dimensional model to study cell matrix interactions".

Liver cirrhosis is one of the main indications for liver transplantation. Due to the organ shortage, this therapy option is limited to the minority of patients suffering from cirrhosis. Therefore, there is a need of alternative treatment options.The aim of our project is to establish a decellularization protocol for human cirrhotic livers slices, which preserves the natural extracellular matrix (ECM) of cirrhotic livers. These decellularized liver slices will serve as a 3 dimensional model to study cell matrix interactions. If we are able to establish a protocol which will preserve the ECM, we will conduct in vitro recellularization experiments to study how the cirrhotic ECM will change the genotype and phenotype of different cell types. With this knowledge we aim to modify specific cell types in vivo or vitro for example prior to cell transplantation. Our ambition is to steer the cell matrix interaction via these modified cells after their transplantation and thereby halt or even reverse the progress of liver cirrhosis. This approach may offer an alternative treatment option in the future.

Team : Karl Hillebrandt, Oliver Klein, Ben Strücker, Igor Sauer  
Read More
 Page 1  >>

Archive


Categories

Year

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.