90-Day Mortality Prediction in Elective Visceral Surgery Using Machine Learning
Stacks Image 28103
Our paper, "90-Day Mortality Prediction in Elective Visceral Surgery Using Machine Learning: A Retrospective Multicenter Development, Validation, and Comparison Study" has been published online ahead of print in the International Journal of Surgery.
Authors are C. Riepe, R. van de Water, A. Winter, B. Pfitzner, L. Faraj, R. Ahlborn, M. Schulze, D. Zuluaga, C. Schineis, K. Beyer, J. Pratschke, B. Arnrich, I.M. Sauer, and M.M. Maurer

Machine Learning (ML) is increasingly being adopted in biomedical research, however, its potential for outcome prediction in visceral surgery remains uncertain. This study compares the potential of ML methods for preoperative 90-day mortality (90DM) prediction of an aggregated multi-organ approach to conventional scoring systems and individual organ models.

This retrospective cohort study enrolled patients undergoing major elective visceral surgery between 2014 and 2022 across two tertiary centers. Multiple ML models for preoperative 90DM prediction were trained, externally validated and benchmarked against the American Society of Anesthesiologists (ASA) score and revised Charlson Comorbidity Index (rCCI). Areas under the receiver operating characteristic (AUROC) and precision recall curves (AUPRC) including standard deviations were calculated. Additionally, individual models for esophageal, gastric, intestinal, liver, and pancreatic surgery were developed and compared to an aggregated approach. A total of 7,711 cases encompassing 78 features were included. Overall 90DM was 4% (n = 309). An XBoost classifier demonstrated the best performance and high robustness following external validation (AUROC: 0.86 [0.01]; AUPRC: 0.2 [0.04]). All models outperformed the ASA score (AUROC: 0.72; AUPRC: 0.08) and rCCI (AUROC: 0.81; AUPRC: 0.11). rCCI, patient age and C-reactive protein emerged as most decisive model weights. Models for gastric (AUROC: 0.88 [0.13]; AUPRC: 0.24 [0.26]) and intestinal surgery (AUROC: 0.87 [0.05]; AUPRC: 0.17 [0.09]) revealed the highest organ-specific performances, while pancreatic surgery yielded the lowest results (AUROC: 0.66 [0.08]; AUPRC: 0.22 [0.12]). A combined multi-organ approach (AUROC: 0.84 [0.04]; AUPRC: 0.21 [0.06]) demonstrated superiority over the weighted average across all organ-specific models (AUROC: 0.82 [0.07]; AUPRC: 0.2 [0.13]).

ML offers robust preoperative risk stratification for 90DM in elective visceral surgery. Leveraging training across multi-organ cohorts may improve accuracy and robustness compared to organ-specific models. Prospective studies are needed to confirm the potential of ML in surgical outcome prediction.
Dr. Agnes Böhm
Stacks Image 28117
Today Agnes Klara Böhm successfully defended her doctoral thesis entitled "Multidimensional analysis of different decellularization methods for diaphragmatic extracellular matrices in a murine model" summa cum laude!

Congratulations !
Gender-based variations in surgical management of colorectal liver metastases
Stacks Image 28144
BMC Cancer published the paper "Gender-based variations in surgical management of colorectal liver metastases: comprehensive analysis". Authors are Pia F. Koch, Kristina Ludwig, Karl H. Hillebrandt, Hannes Freitag, Moritz Blank, Sebastian Knitter, Dominik P. Modest, Felix Krenzien, Georg Lurje, Wenzel Schöning, Johann Pratschke, Igor M. Sauer, Simon Moosburner, and Nathanael Raschzok.

Colorectal cancer with liver metastasis affects both men and women. However, therapeutic strategies and long-term outcomes could be influenced by patients' sex, due to variations in tumour biology, lifestyle, and dietary habits. By conducting a comprehensive comparative analysis, this study aims to detail differences in tumour characteristics, postoperative complications, recurrence rates, and survival outcomes between sexes.
We performed a Single-centre retrospective analysis between 2010 and 2022 of all patients undergoing liver surgery for colorectal liver metastases (CRLM) at the Department of Surgery, Charité- Universitätsmedizin Berlin. Patients were stratified by sex. Statistical analysis was performed using RV4.2.We analysed 642 patients who underwent hepatic resections for CRLM. Baseline patient characteristics were comparable between sexes: However, significant differences (p < 0.001) were noted in body mass index (BMI), with females exhibiting lower BMIs (median BMI in females: 23.7 kg/m² vs. males: 26.5 kg/m²). Primary tumour locations varied significantly (p = 0.008), with females presenting more sigmoid colon tumours (37%), while males predominantly had rectal tumours (35%). RAS mutation rates were higher in females (54%) than males (34%, p = 0.005). A higher prevalence of bilobar metastases were evident in men (62%, p = 0.011), yet surgical techniques and complications showed comparable distributions. The time for resection was longer in males (median 304 min vs. 290 min in females); however, conversion to open surgery took place more often in females (5.2% vs. 2.3% in males). Postoperative complications and survival rates showed no significant differences by patients' sex.
Distinct sex-related patterns in tumour characteristics and postoperative outcomes in patients with CRLM were observed, emphasizing the need for further investigations to understand and address gender-based disparities for more personalized clinical management in the future.

The paper is available open access here.

Clinical prognosticators and targets in the immune microenvironment of intrahepatic cholangiocarcinoma
Stacks Image 28149
The work on "
200pubmed" target="_blank">Clinical prognosticators and targets in the immune microenvironment of intrahepatic cholangiocarcinoma" has been published by Oncoimmunology. Authors are Isis Lozzi, Alexander Arnold, Matthias Barone, Juliette Claire Johnson, Bruno V. Sinn, Johannes Eschrich, Pimrapat Gebert, Ruonan Wang, Mengwen Hu, Linda Feldbrügge, Anja Schirmeier, Anja Reutzel-Selke, Thomas Malinka, Felix Krenzien, Wenzel Schöning, Dominik P. Modest, Johann Pratschke, Igor M. Sauer, and Matthäus Felsenstein.

Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53).

CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression.
These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.
Cytokine-armed vaccinia virus promotes cytotoxicity towards pancreatic carcinoma cells
Stacks Image 28154
The manuscript "Cytokine-armed vaccinia virus promotes cytotoxicity towards pancreatic carcinoma cells via activation of human intermediary CD56dimCD16dim natural killer cells" by Ruonan Wang, Mengwen Hu, Isis Lozzi, Cao Z.J. Jin, Dou Ma, Katrin Splith, Jörg Mengwasser, Vincent Wolf, Linda Feldbrügge, Peter Tang, Lea Timmermann, Karl H. Hillebrandt, Marieluise Kirchner, Philipp Mertins, Georg Hilfenhaus, Christopher Neumann, Thomas Kammertoens, Johann Pratschke, Thomas Malinka, Igor Sauer, Elfriede Nössner, Zhongsheng Guo and Matthäus Felsenstein is available open access in the International Journal of Cancer.
 
Pancreatic ductal adenocarcinoma (PDAC) remains a particularly aggressive disease with few effective treatments. The PDAC tumor immune microenvironment (TIME) is known to be immune suppressive. Oncolytic viruses can increase tumor immunogenicity via immunogenic cell death(ICD). We focused on tumor-selective (vvDD) and cytokine-armed Western-Reserve vaccinia viruses (vvDD-IL2, vvDD-IL15) and infected carcinoma cell lines as well as patient-derived primary PDAC cells. In co-culture experiments, we investigated the cytotoxic response and the activation of human natural killer cells (NK). Infection and virus replication were assessed by measuring virus encoded YFP. We then analyzed intracellular signaling processes and oncolysis via in-depth proteomic analysis, immunoblotting and TUNEL assay. Following the co-culture of mock or virus infected carcinoma cell lines with allogenic PBMCs or NK cell lines, CD56+ NK cells were analyzed with respect to their activation, cytotoxicity and effector function. Both, dose- and time-dependent release of danger signals following infection was assayed. Viruses effectively entered PDAC cells and emitted YFP signals. Infection resulted in concomitant oncolysis. The proteome showed reprogramming of normally active core signaling pathways in PDAC occurred(e.g. MAPK-ERK signaling). Danger-associated molecular patterns were released upon infection and stimulated co-cultured NK cells for enhanced effector cytotoxicity. NK cell subtyping revealed enhanced numbers and activation of a rare CD56dimCD16dim population. Tumor cell killing was primarily triggered via Fas ligands rather than granule release, resulting in marked apoptosis. Cytokine-armed vaccinia viruses induced NK cell activation and enhanced cytotoxicity towards human PDAC cells in vitro. The cytokine-armed virus targets the carcinoma cells with great potential to modulate the TIME in PDAC.
Induced pluripotent stem cell (iPSC) line (EXSURGi001-A) from a patient homozygous for the p.Ala165Thr mutation in the MTARC1 gene
Stacks Image 28178
The paper "Induced pluripotent stem cell (iPSC) line (EXSURGi001-A) from a patient homozygous for the p.Ala165Thr mutation in the MTARC1 gene" in Stem Cell Research is available open access. Authors are Peter Tang, Eriselda Keshi, Silvana Wilken, Louise Wutsdorff, Julienne Mougnekabol, Johann Pratschke, Igor M. Sauer and Nils Haep.

Metabolic dysfunction-associated fatty liver disease (MAFLD), the leading cause of end-stage liver disease in developed countries, is expected to increase over the next decade. Characterized by hepatic steatosis, MAFLD is commonly studied in animal models.
Here, we generated a human induced pluripotent stem cell (iPSC) line from a patient homozygous of the protective MTARC1 gene variant rs2642438:A.
This line displays a normal karyotype and typical pluripotent stem cell morphology and can differentiate into all three germ layers in vitro.
Extracellular NAD+ Response to Post-Hepatectomy Liver Failure: Bridging Preclinical and Clinical Findings
Stacks Image 28183
Our manuscript entitled "Extracellular NAD+ Response to Post-Hepatectomy Liver Failure: Bridging Preclinical and Clinical Findings" has been accepted for publication in Communications Biology. Authors are Can Kamali, Philipp Brunnbauer, Kaan Kamali, Al-Hussein Saqr, Alexander Arnold, Gulcin Harman Kamali, Julia Babigian, Eriselda Keshi, Raphael Mohr, Matthäus Felsenstein, Simon Moosburner, Karl Hillebrandt, Jasmin Bartels, Igor Sauer, Frank Tacke, Moritz Schmelzle, Johann Pratschke, and Felix Krenzien.

Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study investigates extracellular Nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing patients undergoing surgery and exploring NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids.

eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Postoperative eNAD+ levels decreased significantly (p < 0.05), but in advanced liver fibrosis or cirrhosis, this decline diminished or increased. NAD+ biosynthesis enzymes, NAMPT and NMNAT3, were significantly upregulated in higher fibrosis stages (p < 0.0001). NAD+ administration in 3D hepatocyte spheroids rescued hepatocytes from TNFα-induced cell death and improved viability (p < 0.0001). In mice, NAD+ treatment significantly improved survival (p = 0.0155) and liver regeneration (p = 0.0186) after extended liver resection.

eNAD+ is upregulated in PHLF, and NAD+ biosynthesis enzymes show higher expression in liver fibrosis. eNAD+ administration improved survival and hepatocyte viability, offering a potential target for future therapies.

Viscoelastic properties of colorectal liver metastases reflect the tumour cell viability
Stacks Image 28188
Our paper on "Viscoelastic properties of colorectal liver metastases reflect the tumour cell viability" has been accepted for publication in Journal of Translational Medicine.

Colorectal cancer is one of the third most common cancers in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. An improvement could be achieved by considering biomechanical tumour properties with the implementation of magnetic resonance elastography (MRE). Our main hypothesis is that ex vivo MRE combined with histological evaluation of CRLM could provide the knowledge for using tissue mechanical properties as a diagnostic marker for cell viability in tumours.

We examined 34 CRLM samples from patients who had undergone liver resection at the Charité – Universitätsmedizin Berlin, Department of Surgery. The samples were investigated with an ex vivo MRE.  We employed a frequency range from 500 Hz to 5300 Hz, with increments of 400 Hz. For histological analysis, the samples were stained with H&E for categorization by a board-certified pathologist based on their grade of regression. The radiological response was evaluated using the RECIST-criteria.

Five samples showed major response to chemotherapy, 6 samples partial response, and 23 samples showed no response. Analysis of shear wave speed c significant correlation for frequencies including 2100 Hz and above depending on the grade of regression, indicating that low cell viability in CRLM is associated with higher tumour stiffness. Analysis of frequency-independent values of the SP-model showed a more elastic-solid behaviour at low cell viability. Our results suggest that MRE can be used to characterize the biomechanical properties associated with cell viability in CRLM, showing a higher stiffness and elastic-solid behaviour with high regression. In the future, MRE could help to improve the diagnostic tools to create an individual, tailored therapy plan for patients with CRLM.

Authors are Lisa-Marie Skrip, Simon Moosburner, Peter Tang, Jing Guo, Steffen Görner, Heiko Tzschätzsch, Clarissa Hosse, Uli Fehrenbach, Alexander Arnold, Dominik Modest, Felix Krenzien, Wenzel Schöning, Thomas Malinka, Johann Pratschke, Björn Papke, Josef A. Käs, Ingolf Sack, Igor M. Sauer, and Karl H. Hillebrandt,
Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome
Stacks Image 28280
Considering the expected increase in the elderly population and the growing emphasis on aging-related biomedical research, the demand for aged laboratory animals has surged, challenging established husbandry practices. Our objective was to establish a cost-effective method for environmental enrichment, utilizing the liver as a representative organ to assess metabolic changes in response to differing enrichment levels.
We conducted a six-month study involving 24 male Sprague Dawley rats who were randomly assigned to four environmental enrichment groups. Two groups were housed in standard cages, while the others were placed in modified rabbit cages. Half of the groups received weekly playtime in an enriched rat housing unit. We evaluated hormone levels, playtime behavior, and subjective handling experience. Additionally, liver tissue proteomic analysis was performed.
Initial corticosterone levels and those after 3 and 6 months showed no significant differences. Yet, testosterone levels were lower in the control group by the end of the study (p=0.007). In the liver tissue, we detected 1,871 distinct proteins, with 77% of them being consistent across all groups. In gene ontology analysis, no specific pathways were overexpressed. In semiquantitative analysis, we observed differences in proteins associated in lipid metabolism such as Apolipoprotein A-I and Acyl-CoA 6-desaturase, which were lower in the control group (p= 0.024 and p=0.009). Enriched environments reduced rat distress, large cages eased handling, and conflicts between rats lessened with bi-weekly interactions.

The manuscript "Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome" has been accepted for publication in PLOS ONE.
Authors are Nathalie N. Roschke, Karl H. Hillebrandt, Dietrich Polenz, Oliver Klein, Joseph MGV Gassner, Johann Pratschke, Felix Krenzien, Igor M. Sauer, Nathanael Raschzok, and Simon Moosburner.
Proteomic analysis of decellularized mice liver and kidney extracellular matrices
Stacks Image 28285
Based on the collaboration between the Department of General, Visceral, and Transplant Surgery, University Hospital Münster, and Experimental Surgery, Department of Surgery, Charité – Universitätsmedizin Berlin our work on the "Proteomic analysis of decellularized mice liver and kidney extracellular matrices" has been accepted for publication in Journal of Biological Engineering.

In this study, we employed a bottom-up proteomic approach to elucidate the intricate network of proteins in the decellularized extracellular matrices of murine liver and kidney tissues. This approach involved the use of a novel, perfusion-based decellularization protocol to generate acellular whole organ scaffolds. Proteomic analysis of decellularized mice liver and kidney ECM scaffolds revealed tissue-specific differences in matrisome composition, while we found a predominantly stable composition of the core matrisome, consisting of collagens, glycoproteins, and proteoglycans. Liver matrisome analysis revealed unique proteins such as collagen type VI alpha-6, fibrillin-2 or biglycan. In the kidney, specific ECM-regulators such as cathepsin z were detected. The identification of distinct proteomic signatures provides insights into how different matrisome compositions might influence the biological properties of distinct tissues. This experimental workflow will help to further elucidate the proteomic landscape of decellularized extracellular matrix scaffolds of mice in order to decipher complex cell-matrix interactions and their contribution to a tissue-specific microenvironment.

Authors are Anna-Maria Diedrich, Assal Daneshgar, Peter Tang, Oliver Klein, Annika Mohr, Olachi A. Onwuegbuchulam, Sabine von Rueden, Kerstin Menck, Annalen Bleckmann, Mazen A. Juratli, Felix Becker, Igor M. Sauer, Karl H. Hillebrandt, Andreas Pascher, and Benjamin Struecker.
M. Pflüger: Resect or not to resect: Unravelling the Biology of Neoplastic Pancreatic Cysts Using Genetic Studies
Stacks Image 28291

Michael Pflüger - currently research fellow at the Wood Lab, Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine - will present the translational work of the Wood Laboratory and the interdisciplinary management of pancreatic neoplasia at Johns Hopkins Hospital as part of the monthly interdisciplinary event series "The Pancreatic Cancer Precision Medicine Center of Excellence Program (PMCoE) Seminar Series".

"Resect or not to resect: Unravelling the Biology of Neoplastic Pancreatic Cysts Using Genetic Studies - A Translational Approach"
29.01.2024, 22:00/10 pm CET
Zoom link: https://jhjhm.zoom.us/j/94712957898?pwd=NXpHZ1NneFJtdTgvekx4ZVI1MHE3UT09
Priv.-Doz. Dr. med. Karl Hillebrandt
Today Karl Hillebrandt gave an exzellent inaugural lecture entitled „Die Geister, die ich rief ... – Eine kurze Geschichte der De- und Rezellularisierung“ and is now a private lecturer (Privatdozent) at the Charité – Universitätsmedizin Berlin and habilitated in the field of "Experimental Surgery".

He is being honored for his achievements in the field of tissue engineering. His postdoctoral thesis is entitled "New approaches for the characterisation of decellularised tissues and the recellularisation of vessels".

Congratulations!

Stacks Image 28330
New DFG research group FOR 5628 with our participation
Stacks Image 28342
The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is establishing eight new research groups. One of these groups is FOR 5628: "Multiscale magnetic resonance elastography in cancer: The mechanical niche of tumor formation and metastatic spread – towards an improved diagnosis of cancer through mechanical imaging". The speaker and initiator is Prof. Ingolf Sack.

During the development of a tumour, the tissue changes its shape, e.g., alternating between hard and fluidic states. For this, cells exert forces and are simultaneously influenced by forces. This research group is investigating which mechanical-physical processes are behind this. How do tumours and metastases develop? What makes them resistant to therapy? The team is investigating these questions using magnetic resonance elastography (MRE) – a new clinical procedure that can be used to record the mechanical properties of body tissue. The goal is to be able to better diagnose tumours.
Dr. Karl Hillebrandt and Prof. Dr. Igor Sauer are part of the research group as PI in three projects:
  • A03 Cancer cell unjamming and jamming as prerequisites for the formation of primary and metastatic tumors
  • B03 Scaffold composition and fluid pressure in recellularized hepatic and pancreatic tumors
  • C01 Multiscale mechanical properties of tumors and tumor environment – from tissue specimens to patients

Was are happy to be part of this exzellent team!
Prof. Dr. Nathanael Raschzok
Stacks Image 28402
Nathanael Raschzok | Experimental Surgery | 2007

With us in the team since he was a student, he has so far climbed all academic levels with flying colours.
In recognition of his outstanding achievements in research, teaching and the promotion of young academics, Nathanael was awarded the title of Associate Professor at the Charité – Universitätsmedizin Berlin.

Congratulations, Prof. Raschzok!
Work with us | PhD position
We offer a funded PhD position for a computational biologist @ Experimental Surgery, Charité – Universitätsmedizin Berlin!

Are you interested to work on cutting-edge cancer research, and investigating complex-chromosomal as well as other genomic phenomena in human carcinoma cells ?

  • You will work on complex genome analyses (single-cell analyses, whole genome analyses) to detect, annotate and re-construct circular DNA using state of the art computational tools (e.g., Amplicon architect).
  • We provide motivation and high commitment in supervision in areas around experimental oncology and surgery.
  • The position allows the applicant to pursue an academic qualification, while collaborating and networking with international experts on extrachromosomal circular DNA and pancreatic carcinogenesis.

Apply now!
Send brief cover letter and CV via email to Dr. med. Matthäus Felsenstein (matthaeus.felsenstein@charite.de)
BIH Medical Student Research Stipend for Cao Zhong Jing Jin
Stacks Image 28429
Cao Zhong Jing Jin under the supervision of Dr. med. Matthäus Felsenstein successfully applied for the BIH Medical Student Research Stipend on their project “Deciphering the molecular determinants for the transformation of high-grade pancreatic duct dysplasia to invasive carcinoma by single-cell transcriptomics”. She is conducting a cutting-edge research project merging molecular data with histological information in collaboration with the BIH core facilities for single-cell genomics (Dr. Thomas Conrad) and intelligent imaging (Prof. Dr. Christian Conrad). Using modern single-cell- and spatial transcriptomics on pancreatic precursor and carcinoma samples, the project aims at defining molecular signatures that drive dysplastic cells.

Congratulations!
EKFS grant for functional role and clinical relevance of ecDNA in pancreatic adenocarcinoma
Stacks Image 28449
Dr. Matthäus Felsenstein successfully applied for funding from the Else Kröner Fresenius Stiftung (EKFS) for his project “The functional role and clinical relevance of extrachromosomal DNA (ecDNA) in pancreatic adenocarcinoma”. In close collaboration with the excellence group around Professor Anton Henssen, he is aiming at improved understanding of unique genomic patterns as a results of complex chromosomal rearrangements in pancreatic adenocarcinoma that could drive its aggressive behavior. He will use state-of-the art three-dimensional tissue culture to enrich for neoplastic cells from primary PDAC specimen and subsequently perform genome analyses to identify samples that harbor extrachromosomal DNA. The clinical impact of these chromosomal structures will be explored by clinical correlation analyses and therapy response in vitro.

Congratulations!
„Si-M-Day“ | November 24th, 2022
Stacks Image 28502
Join us – at our online networking event.
We, the Si-M spokespersons and coordinators, are pleased to invite you to our first symposium „Si-M-Day“ on 24th November from 9 to 14 h – online.
It is dedicated to networking and initiation of projects between investigators of both partner institutions.
Click
here to register until November 18th (abstract submission deadline October 17th).
 Page 1 / 4  >>
Year
© 2025 Prof. Dr. Igor M. Sauer | Charité - Universitätsmedizin Berlin | Disclaimer

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.