Organ Transplantation and Organ Donation – A Social Responsibility? Experiences in Spain and Germany
Stacks Image 32279

Organ Transplantation and Organ Donation – A Social Responsibility?
Experiences in Spain and Germany

Monday, September 15, 2025, 5:30 – 9:30 p.m.
Embajada de España | Embassy of Spain
Lichtensteinallee 1, 10787 Berlin

Organ transplantation is the therapy of choice for end-stage organ failure. Despite its life-saving potential, this therapy is not available to all patients in Germany, as a lack of willingness to donate has led to a shortage of organs. Together with the Embassy of Spain in Berlin, we would like to explore this topic further. By examining the different experiences of Spain and Germany—two European countries with very different approaches to organ donation—we aim to discuss opportunities, challenges, and possible ways to increase donation willingness. Experts in organ transplantation from both countries will highlight differences and engage in discussion with the audience.

We look forward to welcoming:
Dr. Beatriz Domínguez-Gil, Director of the Spanish Transplant Organization (ONT),
Dr. Luis Rodríguez-Bachiller Villaronga, Gregorio Marañón University Hospital,
Dr. Alberto Sandiumenge Camps, Vall d’Hebrón University Hospital
Franziska Bleis, Patient Ambassador,
Dr. Axel Rahmel, Medical Director of the German Foundation for Organ Transplantation,
Dr. Dr. Sandra Loder, Managing Physician, German Foundation for Organ Transplantation, and
Prof. Dr. Johann Pratschke, Director of the Department of Surgery, Charité.
The event will be moderated by Christian Maier.

The event takes place within the framework of the special exhibition “Vessels: Infrastructures of Life” of the Berliner Medizinhistorisches Museum and Experimental Surgery | Charité, in cooperation with the Cluster of Excellence “Matters of Activity” at Humboldt University of Berlin, as part of the __matter Festival 2025. We gratefully acknowledge the generous support of Stiftung Charité.

Please register for the event here.
ARTE documentary features Project Neo|Pancreas and Ersielda Keshi

The number of people needing donor organs continues to grow — but there simply aren't enough to meet demand. Could the future of transplant medicine lie in the laboratory? This arte documentary offers a fascinating look at the latest breakthroughs in artificial organs and artificial hearts, with insights from Germany, Japan, and Sweden.
The documentary “A Heart on Demand?” by Marcus Fitsch explores one of modern medicine’s most urgent challenges: How can we overcome the shortage of donor organs?

The film follows groundbreaking research projects in Germany, Japan, and Sweden — including work at Berlin’s Charité and Japan’s renowned Riken Institute. Scientists there aren’t just modifying existing organs — they’re creating them entirely in the lab, custom-built and in scalable quantities. From miniature kidneys grown from stem cells to liver cells tested in animal models, and even the vision of a fully functional artificial heart, the documentary dives deep into the innovations shaping the future. Ethical questions are also front and center: What does it mean to manufacture human organs? And just how close are we to a true revolution in transplant medicine?

This is a rich, informative, and visually striking documentary that reveals how science and technology are coming together to redefine the future of healthcare.
Opening Exhibition | »Vessels. Infrastructures of Life«
Stacks Image 28095

We warmly invite you to the opening of »Vessels. Infrastructures of Life« at the Berlin Museum of Medical History at the Charité (bmm), a group exhibition curated by Igor M. Sauer and Navena Widulin with contributions by Assal Daneshgar, Emile de Visscher, Frédéric Eyl, Karl Hillebrandt, Eriselda Keshi, Dietrich Polenz, Moritz Queisner, Iva Rešetar and Igor M. Sauer.

Vernissage
Wed, 4 June 2025, 7:00 - 10:00 pm

Exhibition
5 June – 12 October 2025 Tue, Thu, Fri, Sun, 10:00 am - 5:00 pm Wed, Sat, 10:00 am - 7:00 pm Closed on Mondays

Venue
Berliner Medizinhistorisches Museum der Charité (bmm) Virchowweg 17 10117 Berlin

What do plants, animals, humans and cities have in common? They all have vascular systems and, therefore, an infrastructure without which they would not be able to survive.

In the human body, arteries and veins move the blood together with the heart. Plants have a finely branched vascular system for the transport of water and nutrients. And cities utilize an underground network of pipelines that supply clean water and remove wastewater. The temporary exhibition, co-curated by Igor Sauer and Navena Widulin, shows how these vessels function and how they can be visualized, used and reproduced.

What can medicine learn from these natural and technical supply systems? What role does the interdisciplinary view – between biology, design, materials research and medical technology – play for regenerative medicine? And what innovative approaches can be derived from this for the development of artificial and bioartificial donor organs?

»Vessels. Infrastructures of Life« provides insights into the work of designers, material scientists and surgical researchers who are working together on solutions for the future – inspired by nature, technology and the logic of living systems. From exhibits on transplantation and regenerative medicine to examples of architecture and design, the exhibition offers exciting insights into these often-hidden structures. The objects on display correspond with those in Rudolf Virchow’s historical collection of specimens. A particular focus lies on the connections between natural vessels and human-made networks, such as the regulation of temperature in buildings or the water and wastewater supply in cities.

The temporary exhibition »Vessels. Infrastructures of Life« is a collaboration between the Berlin Museum of Medical History and the Experimental Surgery at the Charité and the Cluster of Excellence »Matters of Activity« of Humboldt-Universität zu Berlin as part of the  _matter Festival 2025.
Dr. Agnes Böhm
Stacks Image 28117
Today Agnes Klara Böhm successfully defended her doctoral thesis entitled "Multidimensional analysis of different decellularization methods for diaphragmatic extracellular matrices in a murine model" summa cum laude!

Congratulations !
_matter Festival 2025


Stacks Image 28127


Matter shapes our existence, although we tend to forget about its activity in everyday life. The _matter Festival 2025 shines a new light on material agencies.
We invite you to explore exhibitions, workshops and debates at 12 venues across Berlin.
Discover the program spanning from April to October here!

The special exhibition »Gefäße – Infrastrukturen des Lebens« (Vessels – Infrastructures of Life) at the Berliner Medizinhistorisches Museum shows how these vessels function and how they can be visualized, used and reproduced. From exhibits on transplantation and regenerative medicine to examples of architecture and design, the exhibition offers exciting insights into these often hidden structures. Surgical procedures in general and transplant surgery, in particular, are inconceivable without the consideration of macro- and microscopic vessels. Vascular structures also play a central role in the field of regenerative medicine and tissue engineering. The exhibits correspond with those in Virchow’s collection of specimens. A particular focus lies on the connections between natural vessels and human-made networks, such as the regulation of temperature in buildings or the water and wastewater supply in cities.

Team Credits
Curation: Igor Sauer & Navena Widulin
Coordination: Sophia Gräfe
Production and Design: Julia Blumenthal
Contributors: Assal Daneshgar, Emile De Visscher, Frédéric Eyl, Eriselda Keshi, Moritz Queisner, Iva Rešetar and Igor Sauer

Dates
Vernissage: Wed, 4 June 2025, 7:00–10:00 pm
Exhibition: 5 June–12 October 2025
Opening Hours:
Tue, Thu, Fri, Sun: 10:00 am–5:00 pm
Wed, Sat: 10:00 am–7:00 pm

Public Program
28 June 2025, 7:00–8:00 pm
Lecture Hall Ruin
Vessels. Infrastructures of Life – Presentation as Part of the Lange Nacht der Wissenschaften 2025 (language: German)
Lecture Program and Guided Tours: Details tbc
DFG-funded ExTra Trial
Stacks Image 28159
Prof. Dr. Nathanael Raschzok received a grant of € 1.85 million for the first three years from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for the Pilot, open, prospective, randomized, multicenter trial on expanding the donor pool by quality assessment of liver grafts declined for transplantation by normothermic ex vivo liver perfusion – ExTra. Co-applicants and/or significantly involved in the preparation of the study were Prof. Dr. Johann Pratschke, Prof. Dr. Igor M. Sauer, Prof. Dr. Dominik Modest, and Priv.-Doz. Dr. Simon Moosburner.

Liver transplantation in Germany is severely limited by a critical shortage of acceptable grafts and a high mortality rate on the waiting list. Furthermore, a significant number of organs are declined due to quality concerns. As demonstrated in pilot studies in the UK, Netherlands, Australia, and the United States, declined liver grafts can and should be used for transplantation after quality assessment by normothermic ex vivo liver machine perfusion (NMP).

The ExTra trial is a randomized controlled trial with a specific focus on patients with a model for end-stage liver disease (MELD) score ≤25 that are not eligible for (non)standard MELD exceptions. This cohort of patients faces an unacceptably long wait time for transplantation, which increases their mortality risk while on the waitlist. The ExTra trial aims to demonstrate that the time-to-transplant for these patients is shortened through the use of grafts that were initially declined for transplantation but fulfill specified quality criteria on normothermic ex vivo machine perfusion assessment. A total of 186 patients will be randomized in a 1:1 fashion to the experimental arm, which consists of a 12-month option to receive a liver graft that was declined by all German transplant centers but meets specified quality criteria, in addition to listing for liver transplantation through the standard allocation process. The control arm will consist of patients who are waitlisted for liver transplantation through the standard allocation process. Liver grafts that have been declined for transplantation must meet specific quality criteria. These include a maximum of 60% macrovesicular steatosis, no fibrosis greater than stage F3, and no cirrhosis. In line with previously published viability criteria for initially declined liver grafts, the decision to use or decline the graft will be made at least four hours after the start of perfusion.

The ExTra trial aims to show that by expanding the donor pool to include the ExTra option of non-transplantable organs, which appear to be usable after machine perfusion, patients without a high MELD score can be transplanted significantly faster. The ExTra trial is thus the first study worldwide in which this concept will be investigated in a randomized clinical trial. The study should make an important contribution to expanding the donor pool for liver transplants and thus ultimately help all patients on the waiting list for liver transplantation.

Stacks Image 28161
Induced pluripotent stem cell (iPSC) line (EXSURGi001-A) from a patient homozygous for the p.Ala165Thr mutation in the MTARC1 gene
Stacks Image 28178
The paper "Induced pluripotent stem cell (iPSC) line (EXSURGi001-A) from a patient homozygous for the p.Ala165Thr mutation in the MTARC1 gene" in Stem Cell Research is available open access. Authors are Peter Tang, Eriselda Keshi, Silvana Wilken, Louise Wutsdorff, Julienne Mougnekabol, Johann Pratschke, Igor M. Sauer and Nils Haep.

Metabolic dysfunction-associated fatty liver disease (MAFLD), the leading cause of end-stage liver disease in developed countries, is expected to increase over the next decade. Characterized by hepatic steatosis, MAFLD is commonly studied in animal models.
Here, we generated a human induced pluripotent stem cell (iPSC) line from a patient homozygous of the protective MTARC1 gene variant rs2642438:A.
This line displays a normal karyotype and typical pluripotent stem cell morphology and can differentiate into all three germ layers in vitro.
Extracellular NAD+ Response to Post-Hepatectomy Liver Failure: Bridging Preclinical and Clinical Findings
Stacks Image 28183
Our manuscript entitled "Extracellular NAD+ Response to Post-Hepatectomy Liver Failure: Bridging Preclinical and Clinical Findings" has been accepted for publication in Communications Biology. Authors are Can Kamali, Philipp Brunnbauer, Kaan Kamali, Al-Hussein Saqr, Alexander Arnold, Gulcin Harman Kamali, Julia Babigian, Eriselda Keshi, Raphael Mohr, Matthäus Felsenstein, Simon Moosburner, Karl Hillebrandt, Jasmin Bartels, Igor Sauer, Frank Tacke, Moritz Schmelzle, Johann Pratschke, and Felix Krenzien.

Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study investigates extracellular Nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing patients undergoing surgery and exploring NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids.

eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Postoperative eNAD+ levels decreased significantly (p < 0.05), but in advanced liver fibrosis or cirrhosis, this decline diminished or increased. NAD+ biosynthesis enzymes, NAMPT and NMNAT3, were significantly upregulated in higher fibrosis stages (p < 0.0001). NAD+ administration in 3D hepatocyte spheroids rescued hepatocytes from TNFα-induced cell death and improved viability (p < 0.0001). In mice, NAD+ treatment significantly improved survival (p = 0.0155) and liver regeneration (p = 0.0186) after extended liver resection.

eNAD+ is upregulated in PHLF, and NAD+ biosynthesis enzymes show higher expression in liver fibrosis. eNAD+ administration improved survival and hepatocyte viability, offering a potential target for future therapies.

Distinctive protein expression in elderly livers in a Sprague-Dawley rat model of normothermic ex vivo liver machine perfusion
Stacks Image 28195
Our manuscript “Distinctive protein expression in elderly livers in a Sprague-Dawley rat model of normothermic ex vivo liver machine perfusion” has been published in the latest issue of the European Journal of Medical Research,
Authors are Maximilian Zimmer, Karl H. Hillebrandt, Nora M. Roschke, Steffen Lippert, Oliver Klein, Grit Nebrich, Joseph M.G.V. Gassner, Felix Strobl, Johann Pratschke, Felix Krenzien, Igor M. Sauer, Nathanael Raschzok, and Simon Moosburner.

Liver grafts are frequently declined due to high donor age or age mismatch with the recipient. To improve the outcome of marginal grafts, we aimed to characterize the performance of elderly vs. young liver grafts in a standardized rat model of normothermic ex vivo liver machine perfusion (NMP).

Livers from Sprague-Dawley rats aged 3 or 12 months were procured and perfused for 6 h using a rat NMP system or collected as a reference group (n = 6/group). Tissue, bile, and perfusate samples were used for biochemical, and proteomic analyses.

All livers cleared lactate during perfusion and continued to produce bile after 6 h of perfusion (614 mg/h). Peak urea levels in 12-month-old animals were higher than in younger animals. Arterial and portal venous pressure, bile production and pH did not differ between groups. Proteomic analysis identified a total of 1477 proteins with oxidoreductase and catalytic activity dominating the gene ontology analysis. Proteins such as aldehyde dehydrogenase 1A1 and 2-Hydroxyacid oxidase 2 were significantly more present in livers of older age.

Young and elderly liver grafts exhibited similar viability during NMP, though proteomic analyses indicated that older grafts are less resilient to oxidative stress. Our study is limited by the elderly animal age, which corresponds to mature but not elderly human age typically seen in marginal human livers. Nevertheless, reducing oxidative stress could be a promising therapeutic target in the future.
Thrombogenicity assessment of perfusable tissue engineered constructs: a systematic review
Stacks Image 28200
Our systematic review on "Thrombogenicity assessment of perfusable tissue engineered constructs" has been accepted for publication in Tissue Engineering, Part B, and is available online ahead of print.

Vascular surgery faces a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency particularly applies to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs holds great promise as a solution to organ shortage for transplantation. To achieve this, it is imperative to (re-)construct a biocompatible and non-thrombogenic vascular network within these organs. In this systematic review, we identify, classify and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue engineered organs and tissues. We conducted a pre-registered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines, comprising a systematic data extraction, in-depth analysis and risk of bias assessment of 116 included studies. We identified shaking (n=28), flow loop (n=17), ex vivo (arterio-venous shunt, n=33) and dynamic in vitro models (n=38) as main approaches for thrombogenicity assessment. This comprehensive review unveils a prevalent lack of standardization and serves as a valuable guide in the design of standardized experimental setups.

Authors are Luna M. Haderer, Yijun Zhou, Peter Tang, Assal Daneshgar, Brigitta Globke, Felix Krenzien, Anja Reutzel-Selke, Marie Weinhart, Johann Pratschke, Igor M. Sauer, Karl H. Hillebrandt, and Eriselda Keshi.
Fritz Linder Prize 2024
Stacks Image 28223
At the 141st German Surgical Congress (DCK 2024), Dr. Friederike Martin received the Fritz Linder Prize 2024 of the German Society of Surgery! The Forum Prize is awarded to the first author of the best presentation within the Surgical Forum. Friederike was honored for her work "Aging is transferable: Old Organs Accelerate Aging and Induce Senescence in Young Recipients“.
In Leipzig, she presented the results of her DFG-funded work with the phantastic team in the laboratory of Stefan G. Tullius, MD, PhD, Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University Medical School, in Boston. Her exciting results are another example of the fruitful axis between Stefan's laboratory and the Experimental Surgery in Berlin, which is funded by the Einstein Foundation Berlin!

Congratulations!
Quality assessment by bile composition in normothermic machine perfusion of rat livers
Stacks Image 28239
Our manuscript “Quality assessment by bile composition in normothermic machine perfusion of rat livers” has been accepted for publication in Tissue Engineering Part A.
Authors are Vanessa Muth, Felix Stobl, Julian Michelotto, Jennifer A. Kirwan, Jeremy Marchand, Nathalie N. Roschke, Simon Moosburner, Johann Pratschke, Igor M. Sauer, Nathanael Raschzok, and Joseph MGV Gassner.

Due to the persistent challenge of organ scarcity in liver transplantation, there is an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) can be used for improved preservation and allows quality assessment of ECD grafts. The primary objective of this study was to assess bile composition within the framework of quality analysis and explore the impact of warm ischemia on its composition in a rodent NMP model.

30 livers from male Sprague Dawley rats were divided into five distinct groups. Each group was subjected to 6 hours of NMP using either DMEM or Steen solution as perfusate, with or without a preceding 30-minute warm ischemia period. We further examined the effect of pressure-controlled perfusion on livers experiencing 30 min WIT using Steen as perfusate. We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at three- hour intervals. We collected bile samples at hourly intervals and assessed biliary pH, LDH, and GGT. Bile acids were measured using mass spectrometry every two hours.

Liver injury parameters were significantly higher in our DCD model. Bile production was significantly reduced in livers exposed to warm ischemia, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers with 30 min WIT. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced in the course of perfusion due to the missing enterohepatic circulation. Prolonged warm ischemia-induced liver injury affects parameters we measured in bile within our small animal NMP model. We hypothesize that this phenomenon may be attributed to the cAMP-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile.
Funding for "Expansion of Clinical Applications for the Human Muscle Stem Cell Product PHSat"
Stacks Image 28256
The Investitionsbank Berlin (IBB) is funding the collaborative project "Expansion of Clinical Applications for the Human Muscle Stem Cell Product PHSat", initiated by the start-up company MyoPax in cooperation with the Departments of Surgery and Neurosurgery at the Charité.
 
Muscle diseases affect more than 20 million patients in Europe with limited therapeutic options. MyoPax, a spin-off of Charité and MDC, has developed a patented method to isolate and expand patient-specific muscle stem cell populations, known as PHSats (Primary Human Satellite-cell derived muscle stem cells), while preserving their regenerative potential.
 
The ProFit project aims to preclinically evaluate additional clinical applications for PHSats. The validation of new indications will lay the foundation for future clinical studies and the expansion of the market potential of PHSats. In a subproject led by Experimental Surgery and PI Priv.-Doz. Dr. Karl Hillebrandt, the preclinical application of decellularized diaphragms combined with PHSats to regenerate the impaired diaphragms of mice with muscular dystrophy will be explored. Two routes of administration will be investigated: direct injection into damaged diaphragms and transplantation onto degenerated diaphragms. The ultimate goal is to preserve or improve respiratory function by augmenting the diaphragm. This approach holds promise for several conditions, such as ventilator-induced diaphragm dysfunction or diaphragm atrophy due to COPD, where impaired diaphragm function affects respiratory capacity.
Stacks Image 28258
Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome
Stacks Image 28280
Considering the expected increase in the elderly population and the growing emphasis on aging-related biomedical research, the demand for aged laboratory animals has surged, challenging established husbandry practices. Our objective was to establish a cost-effective method for environmental enrichment, utilizing the liver as a representative organ to assess metabolic changes in response to differing enrichment levels.
We conducted a six-month study involving 24 male Sprague Dawley rats who were randomly assigned to four environmental enrichment groups. Two groups were housed in standard cages, while the others were placed in modified rabbit cages. Half of the groups received weekly playtime in an enriched rat housing unit. We evaluated hormone levels, playtime behavior, and subjective handling experience. Additionally, liver tissue proteomic analysis was performed.
Initial corticosterone levels and those after 3 and 6 months showed no significant differences. Yet, testosterone levels were lower in the control group by the end of the study (p=0.007). In the liver tissue, we detected 1,871 distinct proteins, with 77% of them being consistent across all groups. In gene ontology analysis, no specific pathways were overexpressed. In semiquantitative analysis, we observed differences in proteins associated in lipid metabolism such as Apolipoprotein A-I and Acyl-CoA 6-desaturase, which were lower in the control group (p= 0.024 and p=0.009). Enriched environments reduced rat distress, large cages eased handling, and conflicts between rats lessened with bi-weekly interactions.

The manuscript "Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome" has been accepted for publication in PLOS ONE.
Authors are Nathalie N. Roschke, Karl H. Hillebrandt, Dietrich Polenz, Oliver Klein, Joseph MGV Gassner, Johann Pratschke, Felix Krenzien, Igor M. Sauer, Nathanael Raschzok, and Simon Moosburner.
Proteomic analysis of decellularized mice liver and kidney extracellular matrices
Stacks Image 28285
Based on the collaboration between the Department of General, Visceral, and Transplant Surgery, University Hospital Münster, and Experimental Surgery, Department of Surgery, Charité – Universitätsmedizin Berlin our work on the "Proteomic analysis of decellularized mice liver and kidney extracellular matrices" has been accepted for publication in Journal of Biological Engineering.

In this study, we employed a bottom-up proteomic approach to elucidate the intricate network of proteins in the decellularized extracellular matrices of murine liver and kidney tissues. This approach involved the use of a novel, perfusion-based decellularization protocol to generate acellular whole organ scaffolds. Proteomic analysis of decellularized mice liver and kidney ECM scaffolds revealed tissue-specific differences in matrisome composition, while we found a predominantly stable composition of the core matrisome, consisting of collagens, glycoproteins, and proteoglycans. Liver matrisome analysis revealed unique proteins such as collagen type VI alpha-6, fibrillin-2 or biglycan. In the kidney, specific ECM-regulators such as cathepsin z were detected. The identification of distinct proteomic signatures provides insights into how different matrisome compositions might influence the biological properties of distinct tissues. This experimental workflow will help to further elucidate the proteomic landscape of decellularized extracellular matrix scaffolds of mice in order to decipher complex cell-matrix interactions and their contribution to a tissue-specific microenvironment.

Authors are Anna-Maria Diedrich, Assal Daneshgar, Peter Tang, Oliver Klein, Annika Mohr, Olachi A. Onwuegbuchulam, Sabine von Rueden, Kerstin Menck, Annalen Bleckmann, Mazen A. Juratli, Felix Becker, Igor M. Sauer, Karl H. Hillebrandt, Andreas Pascher, and Benjamin Struecker.
Priv.-Doz. Dr. med. Karl Hillebrandt
Today Karl Hillebrandt gave an exzellent inaugural lecture entitled „Die Geister, die ich rief ... – Eine kurze Geschichte der De- und Rezellularisierung“ and is now a private lecturer (Privatdozent) at the Charité – Universitätsmedizin Berlin and habilitated in the field of "Experimental Surgery".

He is being honored for his achievements in the field of tissue engineering. His postdoctoral thesis is entitled "New approaches for the characterisation of decellularised tissues and the recellularisation of vessels".

Congratulations!

Stacks Image 28330
Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins
Stacks Image 28335
The publication "Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins" is now available online in Biomaterials and Biosystems. Authors are Laura Elomaa, Ahed Almalla, Eriselda Keshi, Karl H. Hillebrandt, Igor M. Sauer, and Marie Weinhart.

Thanks to its natural complexity and functionality, decellularized extracellular matrix (dECM) serves as an excellent foundation for creating highly cell-compatible bioinks and bioresins. This enables the bioprinted cells to thrive in an environment that closely mimics their native ECM composition and offers customizable biomechanical properties. To formulate dECM bioinks and bioresins, one must first pulverize and/or solubilize the dECM into non-crosslinked fragments, which can then be chemically modified as needed. In bioprinting, the solubilized dECM-derived material is typically deposited and/or crosslinked in a layer-by-layer fashion to build 3D hydrogel structures. Since the introduction of the first liver-derived dECM-based bioinks, a wide variety of decellularized tissue have been employed in bioprinting, including kidney, heart, cartilage, and adipose tissue among others. This review aims to summarize the critical steps involved in tissue-derived dECM bioprinting, starting from the decellularization of the ECM to the standardized formulation of bioinks and bioresins, ultimately leading to the reproducible bioprinting of tissue constructs.
New DFG research group FOR 5628 with our participation
Stacks Image 28342
The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is establishing eight new research groups. One of these groups is FOR 5628: "Multiscale magnetic resonance elastography in cancer: The mechanical niche of tumor formation and metastatic spread – towards an improved diagnosis of cancer through mechanical imaging". The speaker and initiator is Prof. Ingolf Sack.

During the development of a tumour, the tissue changes its shape, e.g., alternating between hard and fluidic states. For this, cells exert forces and are simultaneously influenced by forces. This research group is investigating which mechanical-physical processes are behind this. How do tumours and metastases develop? What makes them resistant to therapy? The team is investigating these questions using magnetic resonance elastography (MRE) – a new clinical procedure that can be used to record the mechanical properties of body tissue. The goal is to be able to better diagnose tumours.
Dr. Karl Hillebrandt and Prof. Dr. Igor Sauer are part of the research group as PI in three projects:
  • A03 Cancer cell unjamming and jamming as prerequisites for the formation of primary and metastatic tumors
  • B03 Scaffold composition and fluid pressure in recellularized hepatic and pancreatic tumors
  • C01 Multiscale mechanical properties of tumors and tumor environment – from tissue specimens to patients

Was are happy to be part of this exzellent team!
ECRT Consumable Grant - Advanced Scientists
Stacks Image 28363
Nils Haep successfully applied for funding from the ECRT Consumable Grant - Advanced Scientists. In his project, Nils is investigating the function of a cysteine-type endopeptidase and described mutations in the endopeptidase in induced pluripotent stem cell derived hepatocytes and their influence on Adiponutrin induced NAFLD.

Congratulations!
Eriselda Keshi and Simon Moosburner CSP fellows
Stacks Image 28393
Dr. Eriselda Keshi and Dr. Simon Moosburner successfully applied for the BIH Charité Clinician Scientist Program (CSP).
The program provides a unique opportunity for young medical doc- tors to combine their clinical training with protected time for research. This structured career path fosters translation of scientific discoveries into application and strengthens the innovative capacity of academic medicine.
Participants of the CSP devote 50 percent of their working hours to research over a period of three years.

Dr. Keshi will work on "NeoPancreasPrint, a 3D printed islet hosting tissue based on biocompatible ink derived from human decellularized pancreas".
Dr. Moosburner applied with this project "Alleviation of Senescence induced Ischemia-Reperfusion in Liver Grafts of Elderly Donors [SenEx".



Congratulations!
 Page 1 / 7  >>
Year
© 2025 Prof. Dr. Igor M. Sauer | Charité - Universitätsmedizin Berlin | Disclaimer

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.