Michael Tummings | Human Insights
Stacks Image 27969
Michael TummingsArtist in Residence @ Experimental Surgery – has released his latest book, Human Insights.

In this powerful work, Tummings turns his lens toward the operating theatre, capturing intimate moments of surgical intervention. His photographs explore the human body not as an object of clinical analysis, but as a site of vulnerability, resilience, and transformation. As noted by Jörg Christian Tonn, Tummings' work "reveals the mysteries of the body," offering entirely new perspectives on physical existence and the role of modern medicine.

With the consent of both patients and surgical teams of several university hospitals, Tummings was granted rare access to document procedures involving organ implants and artificial prostheses. The resulting imagery bridges the worlds of art and science, bringing us face-to-face with the beauty of the human body—beyond the rational and dissecting eye.

Human Insights invites viewers to reconsider how we see ourselves and our bodies, especially in moments of repair and healing.
_matter Festival 2025


Stacks Image 27872


Matter shapes our existence, although we tend to forget about its activity in everyday life. The _matter Festival 2025 shines a new light on material agencies.
We invite you to explore exhibitions, workshops and debates at 12 venues across Berlin.
Discover the program spanning from April to October here!

The special exhibition »Gefäße – Infrastrukturen des Lebens« (Vessels – Infrastructures of Life) at the Berliner Medizinhistorisches Museum shows how these vessels function and how they can be visualized, used and reproduced. From exhibits on transplantation and regenerative medicine to examples of architecture and design, the exhibition offers exciting insights into these often hidden structures. Surgical procedures in general and transplant surgery, in particular, are inconceivable without the consideration of macro- and microscopic vessels. Vascular structures also play a central role in the field of regenerative medicine and tissue engineering. The exhibits correspond with those in Virchow’s collection of specimens. A particular focus lies on the connections between natural vessels and human-made networks, such as the regulation of temperature in buildings or the water and wastewater supply in cities.

Team Credits
Curation: Igor Sauer & Navena Widulin
Coordination: Sophia Gräfe
Production and Design: Julia Blumenthal
Contributors: Assal Daneshgar, Emile De Visscher, Frédéric Eyl, Eriselda Keshi, Moritz Queisner, Iva Rešetar and Igor Sauer

Dates
Vernissage: Wed, 4 June 2025, 7:00–10:00 pm
Exhibition: 5 June–12 October 2025
Opening Hours:
Tue, Thu, Fri, Sun: 10:00 am–5:00 pm
Wed, Sat: 10:00 am–7:00 pm

Public Program
28 June 2025, 7:00–8:00 pm
Lecture Hall Ruin
Vessels. Infrastructures of Life – Presentation as Part of the Lange Nacht der Wissenschaften 2025 (language: German)
Lecture Program and Guided Tours: Details tbc
DFG-funded ExTra Trial
Stacks Image 27797
Prof. Dr. Nathanael Raschzok received a grant of € 1.85 million for the first three years from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for the Pilot, open, prospective, randomized, multicenter trial on expanding the donor pool by quality assessment of liver grafts declined for transplantation by normothermic ex vivo liver perfusion – ExTra. Co-applicants and/or significantly involved in the preparation of the study were Prof. Dr. Johann Pratschke, Prof. Dr. Igor M. Sauer, Prof. Dr. Dominik Modest, and Priv.-Doz. Dr. Simon Moosburner.

Liver transplantation in Germany is severely limited by a critical shortage of acceptable grafts and a high mortality rate on the waiting list. Furthermore, a significant number of organs are declined due to quality concerns. As demonstrated in pilot studies in the UK, Netherlands, Australia, and the United States, declined liver grafts can and should be used for transplantation after quality assessment by normothermic ex vivo liver machine perfusion (NMP).

The ExTra trial is a randomized controlled trial with a specific focus on patients with a model for end-stage liver disease (MELD) score ≤25 that are not eligible for (non)standard MELD exceptions. This cohort of patients faces an unacceptably long wait time for transplantation, which increases their mortality risk while on the waitlist. The ExTra trial aims to demonstrate that the time-to-transplant for these patients is shortened through the use of grafts that were initially declined for transplantation but fulfill specified quality criteria on normothermic ex vivo machine perfusion assessment. A total of 186 patients will be randomized in a 1:1 fashion to the experimental arm, which consists of a 12-month option to receive a liver graft that was declined by all German transplant centers but meets specified quality criteria, in addition to listing for liver transplantation through the standard allocation process. The control arm will consist of patients who are waitlisted for liver transplantation through the standard allocation process. Liver grafts that have been declined for transplantation must meet specific quality criteria. These include a maximum of 60% macrovesicular steatosis, no fibrosis greater than stage F3, and no cirrhosis. In line with previously published viability criteria for initially declined liver grafts, the decision to use or decline the graft will be made at least four hours after the start of perfusion.

The ExTra trial aims to show that by expanding the donor pool to include the ExTra option of non-transplantable organs, which appear to be usable after machine perfusion, patients without a high MELD score can be transplanted significantly faster. The ExTra trial is thus the first study worldwide in which this concept will be investigated in a randomized clinical trial. The study should make an important contribution to expanding the donor pool for liver transplants and thus ultimately help all patients on the waiting list for liver transplantation.

Stacks Image 27799
Distinctive protein expression in elderly livers in a Sprague-Dawley rat model of normothermic ex vivo liver machine perfusion
Stacks Image 27744
Our manuscript “Distinctive protein expression in elderly livers in a Sprague-Dawley rat model of normothermic ex vivo liver machine perfusion” has been published in the latest issue of the European Journal of Medical Research,
Authors are Maximilian Zimmer, Karl H. Hillebrandt, Nora M. Roschke, Steffen Lippert, Oliver Klein, Grit Nebrich, Joseph M.G.V. Gassner, Felix Strobl, Johann Pratschke, Felix Krenzien, Igor M. Sauer, Nathanael Raschzok, and Simon Moosburner.

Liver grafts are frequently declined due to high donor age or age mismatch with the recipient. To improve the outcome of marginal grafts, we aimed to characterize the performance of elderly vs. young liver grafts in a standardized rat model of normothermic ex vivo liver machine perfusion (NMP).

Livers from Sprague-Dawley rats aged 3 or 12 months were procured and perfused for 6 h using a rat NMP system or collected as a reference group (n = 6/group). Tissue, bile, and perfusate samples were used for biochemical, and proteomic analyses.

All livers cleared lactate during perfusion and continued to produce bile after 6 h of perfusion (614 mg/h). Peak urea levels in 12-month-old animals were higher than in younger animals. Arterial and portal venous pressure, bile production and pH did not differ between groups. Proteomic analysis identified a total of 1477 proteins with oxidoreductase and catalytic activity dominating the gene ontology analysis. Proteins such as aldehyde dehydrogenase 1A1 and 2-Hydroxyacid oxidase 2 were significantly more present in livers of older age.

Young and elderly liver grafts exhibited similar viability during NMP, though proteomic analyses indicated that older grafts are less resilient to oxidative stress. Our study is limited by the elderly animal age, which corresponds to mature but not elderly human age typically seen in marginal human livers. Nevertheless, reducing oxidative stress could be a promising therapeutic target in the future.
Thrombogenicity assessment of perfusable tissue engineered constructs: a systematic review
Stacks Image 27756
Our systematic review on "Thrombogenicity assessment of perfusable tissue engineered constructs" has been accepted for publication in Tissue Engineering, Part B, and is available online ahead of print.

Vascular surgery faces a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency particularly applies to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs holds great promise as a solution to organ shortage for transplantation. To achieve this, it is imperative to (re-)construct a biocompatible and non-thrombogenic vascular network within these organs. In this systematic review, we identify, classify and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue engineered organs and tissues. We conducted a pre-registered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines, comprising a systematic data extraction, in-depth analysis and risk of bias assessment of 116 included studies. We identified shaking (n=28), flow loop (n=17), ex vivo (arterio-venous shunt, n=33) and dynamic in vitro models (n=38) as main approaches for thrombogenicity assessment. This comprehensive review unveils a prevalent lack of standardization and serves as a valuable guide in the design of standardized experimental setups.

Authors are Luna M. Haderer, Yijun Zhou, Peter Tang, Assal Daneshgar, Brigitta Globke, Felix Krenzien, Anja Reutzel-Selke, Marie Weinhart, Johann Pratschke, Igor M. Sauer, Karl H. Hillebrandt, and Eriselda Keshi.
Fritz Linder Prize 2024
Stacks Image 27716
At the 141st German Surgical Congress (DCK 2024), Dr. Friederike Martin received the Fritz Linder Prize 2024 of the German Society of Surgery! The Forum Prize is awarded to the first author of the best presentation within the Surgical Forum. Friederike was honored for her work "Aging is transferable: Old Organs Accelerate Aging and Induce Senescence in Young Recipients“.
In Leipzig, she presented the results of her DFG-funded work with the phantastic team in the laboratory of Stefan G. Tullius, MD, PhD, Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University Medical School, in Boston. Her exciting results are another example of the fruitful axis between Stefan's laboratory and the Experimental Surgery in Berlin, which is funded by the Einstein Foundation Berlin!

Congratulations!
Quality assessment by bile composition in normothermic machine perfusion of rat livers
Stacks Image 27994
Our manuscript “Quality assessment by bile composition in normothermic machine perfusion of rat livers” has been accepted for publication in Tissue Engineering Part A.
Authors are Vanessa Muth, Felix Stobl, Julian Michelotto, Jennifer A. Kirwan, Jeremy Marchand, Nathalie N. Roschke, Simon Moosburner, Johann Pratschke, Igor M. Sauer, Nathanael Raschzok, and Joseph MGV Gassner.

Due to the persistent challenge of organ scarcity in liver transplantation, there is an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) can be used for improved preservation and allows quality assessment of ECD grafts. The primary objective of this study was to assess bile composition within the framework of quality analysis and explore the impact of warm ischemia on its composition in a rodent NMP model.

30 livers from male Sprague Dawley rats were divided into five distinct groups. Each group was subjected to 6 hours of NMP using either DMEM or Steen solution as perfusate, with or without a preceding 30-minute warm ischemia period. We further examined the effect of pressure-controlled perfusion on livers experiencing 30 min WIT using Steen as perfusate. We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at three- hour intervals. We collected bile samples at hourly intervals and assessed biliary pH, LDH, and GGT. Bile acids were measured using mass spectrometry every two hours.

Liver injury parameters were significantly higher in our DCD model. Bile production was significantly reduced in livers exposed to warm ischemia, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers with 30 min WIT. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced in the course of perfusion due to the missing enterohepatic circulation. Prolonged warm ischemia-induced liver injury affects parameters we measured in bile within our small animal NMP model. We hypothesize that this phenomenon may be attributed to the cAMP-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile.
A new bicornuate model of rat uterus transplantation
Stacks Image 27619
Our work on a “A new bicornuate model of rat uterus transplantation” has been accepted for publication in Acta Obstetricia et Gynecologica Scandinavica.

Uterus transplantation has revolutionized reproductive medicine for women with absolute uterine factor infertility, resulting in more than 40 reported successful live births worldwide to date. Small animal models are pivotal to refine this surgical and immunological challenging procedure aiming to enhance safety for both the mother and the child.
We established a syngeneic bicornuate uterus transplantation model in young female Lewis rats. All surgical procedures were conducted by an experienced and skilled microsurgeon who organized the learning process into multiple structured steps. Animals underwent meticulous preoperative preparation and postoperative care. Transplant success was monitored by sequential biopsies, monitoring graft viability and documenting histological changes long-term. Bicornuate uterus transplantation were successfully established achieving an over 70% graft survival rate with the passage of time. The bicornuate model demonstrated safety and feasibility, yielding outcomes comparable to the unicornuate model in terms of ischemia times and complications. Longitudinal biopsies were well-tolerated, enabling comprehensive monitoring throughout the study. Our novel bicornuate rat uterus transplantation model provides a distinctive opportunity for sequential biopsies at various intervals after transplantation and therefore comprehensive monitoring of graft health, viability, and identification of potential signs of rejection. Furthermore, this model allows for different interventions in each horn for comparative studies without interobserver differences contrary to the established unicornuate model. By closely replicating the clinical setting, this model stands as a valuable tool for ongoing research in the field of uterus transplantation, promoting further innovation and deeper insights into the intricacies of the uterus transplant procedure.

Authors are Dietrich Polenz, Igor Maximilian Sauer, Friederike Martin, Anja Reutzel-Selke, Muhammad Imtiaz Ashraf , Anja Schirmeier , Steffen Lippert, Kirsten Führer, Johann Pratschke, Stefan Günther Tullius, and Simon Moosburner.
Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants
Stacks Image 23686
Our manuscript "Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants" has been accepted for publication in Frontiers in Immunology, section Alloimmunity and Transplantation. Authors are Muhammad Imtiaz Ashraf, Joerg Mengwasser, Anja Reutzel-Selke, Dietrich Polenz, Kirsten Führer, Steffen Lippert, Peter Tang, Edward Michaelis, Rusan Catar, Johann Pratschke, Christian Witzel, Igor M. Sauer, Stefan G. Tullius, and Barbara Kern.

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APC), particularly dendritic cells (DC), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DC (cDC) and APC on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. While donor depletion of cDC and APC reduced frequencies, maturation, and activation of DC in all analysed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APC and cDC mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.
Funding for "Expansion of Clinical Applications for the Human Muscle Stem Cell Product PHSat"
Stacks Image 23691
The Investitionsbank Berlin (IBB) is funding the collaborative project "Expansion of Clinical Applications for the Human Muscle Stem Cell Product PHSat", initiated by the start-up company MyoPax in cooperation with the Departments of Surgery and Neurosurgery at the Charité.
 
Muscle diseases affect more than 20 million patients in Europe with limited therapeutic options. MyoPax, a spin-off of Charité and MDC, has developed a patented method to isolate and expand patient-specific muscle stem cell populations, known as PHSats (Primary Human Satellite-cell derived muscle stem cells), while preserving their regenerative potential.
 
The ProFit project aims to preclinically evaluate additional clinical applications for PHSats. The validation of new indications will lay the foundation for future clinical studies and the expansion of the market potential of PHSats. In a subproject led by Experimental Surgery and PI Priv.-Doz. Dr. Karl Hillebrandt, the preclinical application of decellularized diaphragms combined with PHSats to regenerate the impaired diaphragms of mice with muscular dystrophy will be explored. Two routes of administration will be investigated: direct injection into damaged diaphragms and transplantation onto degenerated diaphragms. The ultimate goal is to preserve or improve respiratory function by augmenting the diaphragm. This approach holds promise for several conditions, such as ventilator-induced diaphragm dysfunction or diaphragm atrophy due to COPD, where impaired diaphragm function affects respiratory capacity.
Stacks Image 28034
Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome
Stacks Image 23706
Considering the expected increase in the elderly population and the growing emphasis on aging-related biomedical research, the demand for aged laboratory animals has surged, challenging established husbandry practices. Our objective was to establish a cost-effective method for environmental enrichment, utilizing the liver as a representative organ to assess metabolic changes in response to differing enrichment levels.
We conducted a six-month study involving 24 male Sprague Dawley rats who were randomly assigned to four environmental enrichment groups. Two groups were housed in standard cages, while the others were placed in modified rabbit cages. Half of the groups received weekly playtime in an enriched rat housing unit. We evaluated hormone levels, playtime behavior, and subjective handling experience. Additionally, liver tissue proteomic analysis was performed.
Initial corticosterone levels and those after 3 and 6 months showed no significant differences. Yet, testosterone levels were lower in the control group by the end of the study (p=0.007). In the liver tissue, we detected 1,871 distinct proteins, with 77% of them being consistent across all groups. In gene ontology analysis, no specific pathways were overexpressed. In semiquantitative analysis, we observed differences in proteins associated in lipid metabolism such as Apolipoprotein A-I and Acyl-CoA 6-desaturase, which were lower in the control group (p= 0.024 and p=0.009). Enriched environments reduced rat distress, large cages eased handling, and conflicts between rats lessened with bi-weekly interactions.

The manuscript "Optimizing environmental enrichment for Sprague Dawley rats: Exemplary insights into the liver proteome" has been accepted for publication in PLOS ONE.
Authors are Nathalie N. Roschke, Karl H. Hillebrandt, Dietrich Polenz, Oliver Klein, Joseph MGV Gassner, Johann Pratschke, Felix Krenzien, Igor M. Sauer, Nathanael Raschzok, and Simon Moosburner.
Proteomic analysis of decellularized mice liver and kidney extracellular matrices
Stacks Image 23711
Based on the collaboration between the Department of General, Visceral, and Transplant Surgery, University Hospital Münster, and Experimental Surgery, Department of Surgery, Charité – Universitätsmedizin Berlin our work on the "Proteomic analysis of decellularized mice liver and kidney extracellular matrices" has been accepted for publication in Journal of Biological Engineering.

In this study, we employed a bottom-up proteomic approach to elucidate the intricate network of proteins in the decellularized extracellular matrices of murine liver and kidney tissues. This approach involved the use of a novel, perfusion-based decellularization protocol to generate acellular whole organ scaffolds. Proteomic analysis of decellularized mice liver and kidney ECM scaffolds revealed tissue-specific differences in matrisome composition, while we found a predominantly stable composition of the core matrisome, consisting of collagens, glycoproteins, and proteoglycans. Liver matrisome analysis revealed unique proteins such as collagen type VI alpha-6, fibrillin-2 or biglycan. In the kidney, specific ECM-regulators such as cathepsin z were detected. The identification of distinct proteomic signatures provides insights into how different matrisome compositions might influence the biological properties of distinct tissues. This experimental workflow will help to further elucidate the proteomic landscape of decellularized extracellular matrix scaffolds of mice in order to decipher complex cell-matrix interactions and their contribution to a tissue-specific microenvironment.

Authors are Anna-Maria Diedrich, Assal Daneshgar, Peter Tang, Oliver Klein, Annika Mohr, Olachi A. Onwuegbuchulam, Sabine von Rueden, Kerstin Menck, Annalen Bleckmann, Mazen A. Juratli, Felix Becker, Igor M. Sauer, Karl H. Hillebrandt, Andreas Pascher, and Benjamin Struecker.
miRNA as potential biomarkers after liver transplantation: A systematic review
Stacks Image 23730
The publication "miRNA as potential biomarkers after liver transplantation: A systematic review" is now available online in Transplantation Reviews. Authors are Pia F. Koch, Kristina Ludwig, Felix Krenzien, Karl H. Hillebrandt, Wenzel Schöning, Johann Pratschke, Nathanael Raschzok, Igor M. Sauer, and Simon Moosburner.

Early and accurate diagnosis of acute cellular rejection (ACR) and graft complications after liver transplantation is crucial for timely intervention and improved patient outcomes, but their diagnosis rely currently on invasive biopsy sampling, thus prompting the search for non-invasive Biomarkers. MicroRNA (miRNA) have emerged as promising biomarkers in various pathological conditions, and their potential utility in diagnosing acute cellular rejection after liver transplantation has gained significant interest.

This systematic review analyzes studies exploring miRNA as biomarkers for ACR and graft dysfunction in liver transplantation (PROSPERO ID CRD42023465278). The Cochrane Collaboration tool for assessing risk of bias was employed. Population data, identified miRNA and their dynamic regulation, as well as event prediction were compared. Data extraction and quality assessment were performed independently by two reviewers.

The results highlight the potential of miRNA as specific, non-invasive biomarkers for ACR and graft dysfunction following liver transplantation. However, further research is needed to validate these findings and establish standardized diagnostic panels to incorporate them into clinical practice and explore miRNA-based therapies in the future.
Priv.-Doz. Dr. med. Karl Hillebrandt
Today Karl Hillebrandt gave an exzellent inaugural lecture entitled „Die Geister, die ich rief ... – Eine kurze Geschichte der De- und Rezellularisierung“ and is now a private lecturer (Privatdozent) at the Charité – Universitätsmedizin Berlin and habilitated in the field of "Experimental Surgery".

He is being honored for his achievements in the field of tissue engineering. His postdoctoral thesis is entitled "New approaches for the characterisation of decellularised tissues and the recellularisation of vessels".

Congratulations!

Stacks Image 23756
Moderate LMWH anticoagulation improves success rate of hind limb allotransplantation in mice
Stacks Image 23773
The publication "Moderate LMWH Anticoagulation Improves Success Rate of Hind Limb Allotransplantation in Mice" is now available online in Plastic & Reconstructive Surgery-Global Open. Authors are B. Kern, M.-I. Ashraf, A. Reutzel-Selke, J. Mengwasser, D. Polenz, E. Michaels, J. Pratschke, S.G. Tullius, Ch. Witzel, and I.M. Sauer.

The mouse hind limb model represents a powerful research tool in vascularized composite tissue allotransplantation, but its applicability is limited due to poor graft survival (62%–83%). Vascular thrombosis and massive hemorrhage are the major causes for these drop-outs. We hypothesize that because of better anticoagulation effect and lower risk of thrombocytopenia, application of low molecular weight heparin (LMWH) will minimize vascular complications and enhance graft and animal survival.

Fifty allogeneic hind limb transplantations were performed (C57BL/6 to DBA/2 mice) using five different anticoagulation protocols. Bleeding and thromboembolic events were recorded macroscopically by postoperative hemorrhage and livid discoloration of the graft, respectively. Graft perfusion and survival were monitored daily by capillary-refill-time of graft toes within 2–3 seconds. Vascular congestion and tissue necrosis were examined by histological evaluation of hematoxylin-eosin-stained tissue sections.

All transplantations were technically successful. Increase in thromboembolic events and a concomitant decrease in bleeding events were observed with the decreasing concentration of heparin in the perfusion solution. Although treatment of donor and recipient with low dose of LMWH could not reduce thromboembolic events, moderate dose effectively reduced these events. Compared with the poor outcome of graft perfusion with heparin alone, additional treatment of donor and recipient with low dose of LMWH improved graft and animal survival by 18%. Interestingly, animals treated with moderate dose of LMWH demonstrated 100% graft and animal survival.
Treatment of donor and recipient mice with a moderate dose of LMWH prevents vascular complications and improves the outcome of murine hind limb transplants.
Priv.-Doz. Dr. med. Simon Moosburner
Today Simon Moosburner gave his inaugural lecture on "Liver Transplantation in Germany - Opportunities and Solutions for the Future". He is now – at the age of 28 (!) – a private lecturer (Privatdozent) at the Charité – Universitätsmedizin Berlin and habilitated in the field of "Experimental Surgery".

He is being honored for his achievements in the field of extracorporeal organ perfusion and organ transplantation. His postdoctoral thesis is entitled "Challenges and solutions in adults and children after liver transplantation".

Congratulations!

Stacks Image 23799
Eriselda Keshi and Simon Moosburner CSP fellows
Stacks Image 23819
Dr. Eriselda Keshi and Dr. Simon Moosburner successfully applied for the BIH Charité Clinician Scientist Program (CSP).
The program provides a unique opportunity for young medical doc- tors to combine their clinical training with protected time for research. This structured career path fosters translation of scientific discoveries into application and strengthens the innovative capacity of academic medicine.
Participants of the CSP devote 50 percent of their working hours to research over a period of three years.

Dr. Keshi will work on "NeoPancreasPrint, a 3D printed islet hosting tissue based on biocompatible ink derived from human decellularized pancreas".
Dr. Moosburner applied with this project "Alleviation of Senescence induced Ischemia-Reperfusion in Liver Grafts of Elderly Donors [SenEx".



Congratulations!
Prof. Dr. Nathanael Raschzok
Stacks Image 23828
Nathanael Raschzok | Experimental Surgery | 2007

With us in the team since he was a student, he has so far climbed all academic levels with flying colours.
In recognition of his outstanding achievements in research, teaching and the promotion of young academics, Nathanael was awarded the title of Associate Professor at the Charité – Universitätsmedizin Berlin.

Congratulations, Prof. Raschzok!
DFG | Grant for Machine Perfusion RCT
Stacks Image 23840
The German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) s sponsoring a multicenter randomized controlled clinical trial by Prof. Dr. Georg Lurje entitled "End-ischemic hypothermic oxygenated (HOPE) or normothermic machine perfusion (NMP) compared to conventional cold storage (CCS) in donation after brain death (DBD) liver transplantation; a prospective multicenter randomized controlled trial (HOPE-NMP)".

The purpose of this study is to test the effects of end-ischemic NMP versus end-ischemic HOPE technique in a multicentre prospective randomized controlled clinical trial (RCT) on ECD liver grafts in DBD liver-transplantation (HOPE-NMP). Two-hundred-thirteen (n = 213) human whole organ liver grafts will be submitted to either NMP (n = 85) or HOPE (n = 85) directly before implantation and going to be compared to a control-group of patients (n = 43) transplanted with static cold storage preserved ECD-allografts. Primary (surgical complications as assessed by the comprehensive complication index [CCI]) and secondary (graft- and patient survival, hospital costs, hospital stay) endpoints are going to be analysed.


Congratulations !
„Si-M-Day“ | November 24th, 2022
Stacks Image 23928
Join us – at our online networking event.
We, the Si-M spokespersons and coordinators, are pleased to invite you to our first symposium „Si-M-Day“ on 24th November from 9 to 14 h – online.
It is dedicated to networking and initiation of projects between investigators of both partner institutions.
Click
here to register until November 18th (abstract submission deadline October 17th).
 Page 1 / 7  >>
© 2025 Prof. Dr. Igor M. Sauer | Charité - Universitätsmedizin Berlin | Disclaimer

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.