DFG | Grant for Machine Perfusion RCT
Stacks Image 28414
The German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) s sponsoring a multicenter randomized controlled clinical trial by Prof. Dr. Georg Lurje entitled "End-ischemic hypothermic oxygenated (HOPE) or normothermic machine perfusion (NMP) compared to conventional cold storage (CCS) in donation after brain death (DBD) liver transplantation; a prospective multicenter randomized controlled trial (HOPE-NMP)".

The purpose of this study is to test the effects of end-ischemic NMP versus end-ischemic HOPE technique in a multicentre prospective randomized controlled clinical trial (RCT) on ECD liver grafts in DBD liver-transplantation (HOPE-NMP). Two-hundred-thirteen (n = 213) human whole organ liver grafts will be submitted to either NMP (n = 85) or HOPE (n = 85) directly before implantation and going to be compared to a control-group of patients (n = 43) transplanted with static cold storage preserved ECD-allografts. Primary (surgical complications as assessed by the comprehensive complication index [CCI]) and secondary (graft- and patient survival, hospital costs, hospital stay) endpoints are going to be analysed.


Congratulations !
„Si-M-Day“ | November 24th, 2022
Stacks Image 28502
Join us – at our online networking event.
We, the Si-M spokespersons and coordinators, are pleased to invite you to our first symposium „Si-M-Day“ on 24th November from 9 to 14 h – online.
It is dedicated to networking and initiation of projects between investigators of both partner institutions.
Click
here to register until November 18th (abstract submission deadline October 17th).
DFG Walter-Benjamin grant for the investigation of sex as a biological variable in alloimmunity
Stacks Image 28511
With a DFG Walter-Benjamin grant Dr. med. Friederike Martin will join the laboratory of Transplant Surgery Research at Harvard under the direction of Professor Stefan G. Tullius in Boston to investigate the role of biological sex for transplantation outcome.

Influences of donor and recipient sex on transplantation outcome have been described manifold, as well as an influence of sex hormones on the innate and adaptive immune response. So far, research, investigating the impact of sex hormones and different sex- and age-dependent sex-hormone levels on alloimmune response after solid organ transplantation is lacking. The aim of the project “Sex as a biological Variable in Alloimmunity” is, to delineate the impact of sex hormones and especially estrogens and age-dependent changes in estrogen-levels on alloimmune response after allogenic transplantation.  The project is based on the publication “Recipient sex and estradiol levels affect transplant outcomes in an age-specific fashion” published in the AJT in 2021 by the workgroup of Prof. Tullius.

Friederike, who already received the Sanofi Women in Transplantation fellowship grant for research in gender and sex in transplantation in 2021, will work as a Postdoc on this project in the Tullius Lab for an expected 2 years period, starting in January 2023.


Congratulations!
2022 TTS Mentee-Mentor-Award
Stacks Image 28517
Dr. Barbara Kern und Prof. Dr. Stefan G. Tullius received the 2022 Mentee-Mentor-Award of The Transplant Society during the 29th Conference in Buenos Aires.

In collaboration with National and International Societies, TTS acknowledges and recognizes the efforts of scientists who have advanced our understanding of transplantation science and fostered the development of young investigators.
The Mentee-Mentor Awards are designed to encourage dialogue and interactions between trainees and established investigators, and provide financial support for their joint participation in the Congress.

Congratulations!
Inaugural Lectures
We are pleased to announce that four members of staff have successfully completed their habilitation work in the last few months!

On
Friday, 08.07.2022 at 15:00 in lecture hall 3 of the teaching building (Forum 3, CVK), Dr. med. habil. Linda Feldbrügge and Dr. med. habil. Paul Ritschl will give their inaugural lectures entitled "New role of surgery in modern tumour and transplant medicine".

On
Friday, 15.07.2022 at 16:30 in the Friedrich Kopsch lecture theatre of the Anatomy Department at Campus Mitte Dr. med. habil. Eva Dobrindt and Dr. med. habil. Rosa Schmuck will present their inaugural lectures with the topic "An Operating Room of One's Own - The Surgeon in Ancient Tradition and Modernity".
This will be followed by a small reception in the park in front of the venue.
Stacks Image 28546
Si-M | Topping-out Ceremony
Today, representatives of Charité – Universitätsmedizin Berlin and Technische Universität Berlin celebrated the topping-out ceremony for the research building "Der Simulierte Mensch" (Si-M, "The Simulated Human") together with political representatives. Guests included the Governing Mayor Franziska Giffey, Senator for Health and Science and Charité Supervisory Board Chair Ulrike Gote and Finance Senator Daniel Wesener.

We are very excited: this will be a great building with even greater content.

Stacks Image 28556
Tissue Engineering for the Diaphragm
"Tissue Engineering for the Diaphragm and its Various Therapeutic Possibilities – A Systematic Review" is available here in Advanced Therapeutics (open access).

Diaphragmatic impairments exhibit high morbidity as well as mortality while current treatment options remain unsatisfactory. Tissue engineering (TE) approaches have explored the generation of an optimal biocompatible scaffold for diaphragmatic repair through tissue decellularization or de novo construction, with or without the addition of cells. The authors conducted a systematic review on the current state of the art in diaphragmatic tissue engineering (DTE) and found 24 articles eligible for final synthesis. The included approaches studied decellularization-based graft generation and de novo bioscaffold construction. Three studies focused on in vitro host-scaffold interaction with synthesized, recellularized grafts and decellularized extracellular matrix scaffolds. Another three studies investigated evaluation tools for decellularization efficacy. Among all studies, recellularization is performed in both decellularization-based and de novo generated scaffolds. De novo constructed biocomposites as well as decellularized and recellularized scaffolds induced pro-regenerative remodeling and recovery of diaphragmatic function in all examined animal models. Potential therapeutic applications comprise substance defects requiring patch repair, such as congenital diaphragmatic hernia, and functional diseases demanding an entire organ transplant, like muscular dystrophies or dysfunction after prolonged artificial respiration.

Autors are Agnes K. Boehm, Karl H. Hillebrandt, Tomasz Dziodzio, Felix Krenzien, Jens Neudecker, Simone Spuler, Johann Pratschke, Igor M. Sauer, and Marco N. Andreas.
Stacks Image 28571
Robert-Koch-Prize awarded to Simon Moosburner
Today, Dr. med. Simon Moosburner received the Robert-Koch-Prize for one of the three best dissertations of the Charité - Universitätsmedizin Berlin in 2020 for his thesis titled  "Erweiterung der Spenderpopulation bei Lebertransplantation: Klinischer Bedarf und Entwicklung eines Kleintier-Lebermaschinenperfusionssystems (Expanding the donor pool for liver transplantation: clinical need and development of small animal liver perfusion system)".


Congratulations!
Stacks Image 28637
BIH Charité Clinician Scientist Symposium in Honor and Memory of Duška Dragun
Stacks Image 28654
28 May 2021 - 29 May 2021
BIH Charité Clinician Scientist Symposium in Honor and Memory of Duška Dragun

The symposium is composed of several components: First and foremost, it will commemorate Prof. Duška Dragun, the former Director of the BIH Biomedical Innovation Academy (BIA) and Director of the BIH Charité Clinician Scientist Program, who passed away in December 2020, and will be joined by stakeholders from academia and science policy. In addition, there will be scientific sessions, which will form tandems of program fellows and invited speaker. During a digital certificate ceremony on the evening of 28 May 2021, some 50 alumni will be bid farewell. The event language is English.

When
28 and 29 May 2021
10:00 - 6:30 pm

How
Online Event (semi-digital)

Registration
To receive the login link please register here.
Advanced Clinician Scientists
Stacks Image 28659
Priv.-Doz. Dr. Nathanael Raschzok and Priv.-Doz. Dr. Felix Krenzien successfully applied for the BIH Charité Advanced Clinician Scientist Pilot Programme (AdCSP) in a highly competitive process.

The BIH Charité AdCSP is designed as a career-phase-specific, sustainable funding programme that aims to closely interlink individual and institutional funding. The primary goal of the programme is to simultaneously incentivise the fellows and recognise the permissive academic culture of the respective clinics or institutes. Like the BIH Charité Clinician Scientist Programme (CSP) and the "Digital Clinician Scientist Programme" (DCSP), which has been additionally funded by the DFG since 2019, it is intended to be open to all clinical disciplines and to offer multiple networking opportunities for the funded fellows and participating clinics and institutes.

Congratulations!
Recellularization of decellularized bovine carotid arteries
Stacks Image 28669
"In vitro recellularization of decellularized bovine carotid arteries using human endothelial colony forming cells" was published in the latest issue of Journal of Biological Engineering.
Many patients suffering from peripheral arterial disease (PAD) are dependent on bypass surgery. However, in some patients no suitable replacements (i.e. autologous or prosthetic bypass grafts) are available. Advances have been made to develop autologous tissue engineered vascular grafts (TEVG) using endothelial colony forming cells (ECFC) obtained by peripheral blood draw in large animal trials. Clinical translation of this technique, however, still requires additional data for usability of isolated ECFC from high cardiovascular risk patients.
Bovine carotid arteries (BCA) were decellularized using a combined SDS (sodium dodecyl sulfate) -free mechanical-osmotic-enzymatic-detergent approach to show the feasibility of xenogenous vessel decellularization. Decellularized BCA chips were seeded with human ECFC, isolated from a high cardiovascular risk patient group, suffering from diabetes, hypertension and/or chronic renal failure. ECFC were cultured alone or in coculture with rat or human mesenchymal stromal cells (rMSC/hMSC). Decellularized BCA chips were evaluated for biochemical, histological and mechanical properties. Successful isolation of ECFC and recellularization capabilities were analyzed by histology.

Decellularized BCA showed retained extracellular matrix (ECM) composition and mechanical properties upon cell removal. Isolation of ECFC from the intended target group was successfully performed (80% isolation efficiency). Isolated cells showed a typical ECFC-phenotype. Upon recellularization, co-seeding of patient-isolated ECFC with rMSC/hMSC and further incubation was successful for 14 (n = 9) and 23 (n = 5) days. Reendothelialization (rMSC) and partial reendothelialization (hMSC) was achieved. Seeded cells were CD31 and vWF positive, however, human cells were detectable for up to 14 days in xenogenic cell-culture only. Seeding of ECFC without rMSC was not successful.

Using our refined decellularization process we generated easily obtainable TEVG with retained ECM- and mechanical quality, serving as a platform to develop small-diameter (< 6 mm) TEVG. ECFC isolation from the cardiovascular risk target group is possible and sufficient. Survival of diabetic ECFC appears to be highly dependent on perivascular support by rMSC/hMSC under static conditions. ECFC survival was limited to 14 days post seeding.
Authors are N. Seiffert, P. Tang, E. Keshi, A. Reutzel-Selke, S. Moosburner, H. Everwien, D. Wulsten, H. Napierala, J. Pratschke, I.M. Sauer, K. Hillebrandt, and B. Struecker.
J Biol Eng 15, 15 (2021). https://doi.org/10.1186/s13036-021-00266-5
Position for Research Associate / Research Fellow
Stacks Image 28674
Priv.-Doz. Dr. Nathanael Raschzok and his team are working on strategies for (re-) conditioning of marginal liver grafts by ex vivo liver machine perfusion. The aim for the proposed job offer, which is funded by grants of the Else Kröner-Fresenius-Stiftung, is to make steatotic liver grafts, which are usually discarded from transplantation due to the high risk for the recipient, acceptable for transplantation. We have already established a small animal model of ex vivo liver machine perfusion as well as transplantation. Aim of this project is to test a clinically approved drug in dose-response studies (based on preliminary data), followed by in vivo studies in the rat liver transplantation model.

Your responsibility will be:
  • Organ perfusion of murine livers in our established small animal modell for ex vivo liver machine perfusion
  • Support of in rat liver transplantation experiments
  • Organ recovery and transplantation (not mandatory)
  • Biochemical analysis of the perfusat and the lipid metabolism (ELISA), tissue analysis (qRT-PCR, Wester Blot, immunochemistry, immunofluorescence)
  • We fully support the application and submission of a doctoral thesis (e.g. Dr. rer.medic or MD/PhD)
Require­ments
  • Degree in biology, biochemistry, biotechnology or medicine
  • Pevious experience in molecular cell biology and/or proteinbiochemistry, or surgical research
  • Proficiency in standard methods, especially histology, immunhistochemistry, qPCR, FACS, microscopy, cell culture/cell isolation
  • Excellent english language skills
Personal characteristics
  • innovative spirit and extraordinary motivation, interest in purposeful work
  • team work orientated
  • organized, ability for analytic and independent work ethic

If you're the right person: please send all application documents, e.g. cover letter, curriculum vitae, certificates, attestations, etc. to the following address, quoting the reference number by e-mail to
Charité – Universitätsmedizin Berlin
Chirurgische Klinik, Exp. Chirurgie
z.Hd. PD Dr. Nathanael Raschzok
Augustenburger Platz 1
D-13353 Berlin
nathanael.raschzok@charite.de
Extended liver resection in mice: state of the art and pitfalls
Stacks Image 28689
"Extended liver resection in mice: state of the art and pitfalls – a systematic review" is available in ur J Med Res. 2021; 26(1):6.
Rodent models of liver resection have been used to investigate and evaluate the liver's complex physiology and pathology since 1931. First documented by Higgins and Anderson, such models were created to understand liver regeneration mechanisms to improve outcomes in patients undergoing extensive liver resection for liver cancer or other underlying liver diseases. A systematic search was conducted using Pubmed, gathering publications up to January 2019, which engaged with the mouse model of extended liver resection as a method itself. The results of this search were filtered according to their language, novelty, and relevancy.
Through the overview, laid out in the selected publications, this paper reviews the shift of the extended liver resection model from rat to the mouse, describes the state of the art in the experimental setting, and discusses the possible limitations and pitfalls. Clearly, the extended liver resection in mice is a reproducible, practical and easy to learn method.
Authors are Can Kamali, Kaan Kamali, Philipp Brunnbauer, Katrin Splith, Johann Pratschke, Moritz Schmelzle, and Felix Krenzien.
Duška Dragun
Stacks Image 28694
We have received the sad news that Professor Duška Dragun, Director of the Biomedical Innovation Academy (BIA) of the Berlin Institute of Health (BIH) and Head of the Charité BIH Clinician Scientist Program, succumbed to her long, severe, bravely endured illness on December 28, 2020 at the age of 51.
 
Her tireless efforts were devoted to her life's work: the Charité BIH Clinician Scientist Program. Ten years ago, she launched the first Clinician Scientist Program in Berlin and over the decade established and continuously expanded it as "best practice" for the German-speaking region. She has played a key role in developing and shaping the various programs for scientifically active physicians: from the Clinician Scientist Program, which enables aspiring specialists to spend up to 50 percent of their working time on research, to the Junior Clinician Scientist Program with 20 percent working time on research, which begins in the first year of specialist training, to the Advanced Clinician Scientist Program for specialists with postdoctoral qualifications. Two years ago, she successfully applied to the German Research Foundation (DFG) for the first and only Digital Clinician Scientist Program in Germany. This enables young physicians and scientists to conduct research and work in the field of digitalization in medicine and healthcare. Thus, within a few years, Duška Dragun made a significant contribution to building a new generation of young professionals for medicine – the impact of her programs will last for a long time, via promising individual careers as well as via the programmatic strengthening of a patient-oriented science.  
 
As a physician herself, Professor Duška Dragun has always been committed to research: As acting senior physician and deputy to the acting director of the Department of Nephrology and Intensive Care Medicine at the Charité Campus Virchow-Klinikum, as well as head of the nephrology research laboratory, she made highly regarded, internationally distinguished contributions to transplantation research with the goal of improving graft approach and long-term survival, preventing cardiovascular comorbidity, and thus improving the quality of life and life expectancy of transplanted patients.  She pursued her great goals with tremendous energy and passion, impressive perseverance and clear determination. She devoted her full attention to her employees, colleagues, and students, being equally attentive, understanding, and demanding.
 
The death of Duška Dragun is a great and painful loss. We will miss her greatly as director of the Charité BIH Clinician Scientist Program, as a physician, university professor and scientist. To us she was an inspiration, a mentor and an ever driving force.

Above all, however, we will greatly miss Duška as a friend.  
Two new (Junior) Clinician Scientitsts
Stacks Image 28721
Dr. Simon Moosburner and Dr. Tomasz Dziodzio successfully applied for the BIH Charité (Junior) Clinician Scientist Program.

Dr. Dziodzio is studying pathomechanisms of obesity in the context of kidney transplantation and investigates the impact of obesity on the immune response in the kidney transplant recipient. In addition, a clinical trial will investigate whether surgical weight reduction in obese patients prior to kidney transplantation leads to improved graft function.

Dr. Moosburner is working on the extracorporeal evaluation of liver grafts from older donors. The aim is to characterise old liver grafts during normothermic machine perfusion. For this purpose, a model for normothermic ex vivo machine perfusion of small animal livers as well as liver transplantation in the rat model was established.

Engineering an endothelialized, endocrine NeoPancreas
Stacks Image 28738
Acta Biomaterialia accepted our latest paper on "Engineering an endothelialized, endocrine Neo-Pancreas: evaluation of islet functionality in an ex vivo model".

Islet-based recellularization of decellularized, repurposed rat livers may form a transplantable Neo-Pancreas. The aim of this study is the establishment of the necessary protocols, the evaluation of the organ structure and the analysis of the islet functionality ex vivo.
After perfusion-based decellularization of rat livers, matrices were repopulated with endothelial cells and mesenchymal stromal cells, incubated for 8 days in a perfusion chamber and finally repopulated on day 9 with intact rodent islets. Integrity and quality of re-endothelialization was assessed by histology and FITC-dextran perfusion assay. Functionality of the islets of Langerhans was determined on day 10 and day 12 via glucose stimulated insulin secretion.
Blood gas analysis variables confirmed the stability of the perfusion cultivation. Histological staining showed that cells formed a monolayer inside the intact vascular structure. These findings were confirmed by electron microscopy. Islets infused via the bile duct could histologically be found in the parenchymal space. Adequate insulin secretion after glucose stimulation after 1-day and 3-day cultivation verified islet viability and functionality after the repopulation process.
We provide the first proof-of-concept for the functionality of islets of Langerhans engrafted in a decellularized rat liver. Furthermore, a re-endothelialization step was implemented to provide implantability. This technique can serve as a bioengineered platform to generate implantable and functional endocrine Neo-Pancreases.

Authors are Hannah Everwien, Eriselda Keshi, Karl H. Hillebrandt, Barbara Ludwig, Marie Weinhart, Peter Tang, Anika S. Beierle, Hendrik Napierala, Joseph MGV Gassner, Nicolai Seiffert, Simon Moosburner, Dominik Geisel, Anja Reutzel-Selke, Benjamin Strücker, Johann Pratschke, Nils Haep, and Igor M. Sauer.
Stacks Image 28740
Best Poster prize for Anna Pfefferkorn
Stacks Image 28745
Anna Pfefferkorn won the Best Poster prize for our work on "Molecular and cellular mechanisms of Lipocalin-2 mediated renoprotection in kidney transplantation" at the Kongress für Nephrologie 2020, held in Berlin 1.-4. October, 2020!

Lipocalin-2 (Lcn2) is distinctly upregulated in kidney transplants and serves as an early marker of AKI, DGF and acute rejection. However, the functional role and mechanisms underlying Lcn2 upregulation remain largely unknown. Using a mouse model of kidney transplantation we recently demonstrated a renoprotective role of recombinant Lcn2:Siderophore:Fe (rLcn2). However, the molecular and cellular events underlying the renoprotective effects of rLcn2 in kidney allografts remain unclear. Elucidating these events forms the primary focus of the current study.
rLcn2 significantly lowered CD8+ T cells in the allograft, LN and blood at POD 7, whereas their number remained unaffected in spleen. Nevertheless, the number of CD4+ T Lymphocytes was reduced only in lymph nodes. NKG2D+CD8+T cells and CD27+CD11b+NKp46+NK cells were the most prominent subpopulations of the cytotoxic lymphocytes whose frequencies were significantly reduced in graft, spleen and blood with the treatment of rLcn2. Besides, a significantly reduced infiltration of monocytes/macrophages was also observed at POD-7 with the said treatment. Importantly, degranulation capacity and IFNg production of intragraft and splenic CD4+ and CD8+ T cells were impaired in the treated animals. Besides, rLcn2 lowered hypoxia and reoxygenation induced cytotoxicity of the primary RTECs, associated with reduced caspase-3 cleavage and activation of Erk and AKt signaling.

rLcn2 treatments differentially affects the relative frequencies and activation of various immune cell. Besides, rLcn2 depicts cytoprotective effect on murine primary RTECs during H/R, possibly via activation of Erk and Akt signaling.

CONGRATULATIONS !
Declined Liver Grafts – Analysis of the German Donor Population from 2010 to 2018
Stacks Image 28750
"Declined Liver Grafts – Analysis of the German Donor Population from 2010 to 2018" was published in the Zeitschrift für Gastroenterologie.
The lack of suitable allografts limits the availability of liver transplantation in Germany. The quality of potentially available German donor livers has to date not been analyzed.
Analysis of all donors for potential liver transplantations reported to the Eurotransplant by the German Organ Transplantation Foundation from 2010 to 2018. Categorization of transplanted and discarded organs utilizing available histopathological reports and predefined extended criteria for organ donation.
A total of 8594 livers were offered for transplantation, of which 15.2 % were discarded. During the analysis period the proportion of donor livers from extended criteria donors increased from 65 % to 70 % (p = 0.005). In 2018, 21.3 % of offered donor livers were discarded, more than half (56.4 %) of these organs came from donors meeting multiple extended criteria. Livers were significantly more likely to be not transplanted, when from donors of older age (> 65 years; 41 vs. 28 %), BMI > 30 kg/m2 (29 vs. 14 %) or elevated transaminase levels (all p < 0.001).
Despite the consistent organ scarcity in Germany, a relevant amount of livers cannot be transplanted due to a multitude of organ quality limitations. This should stimulate the search for concepts such as normothermic ex vivo machine perfusion to evaluate, protect and potentially improve organ quality.

Authors are Simon Moosburner, Nathanael Raschzok, Christina Schleicher, Detlef Bösebeck, Joseph M.G.V. Gaßner, Paul V. Ritschl, Axel Rahmel, Igor M. Sauer, and Johann Pratschke.
Z Gastroenterol. 2020 Aug 24. doi: 10.1055/a-1199-7432. Online ahead of print.
Felix Krenzien received Ferdinand-Sauerbruch Prize 2020
Stacks Image 28755
Priv.-Doz. Dr. Felix Krenzien received the Ferdinand-Sauerbruch Prize 2020 for his project and publication „The ILLS Laparoscopic Liver Surgery Fellow Skills Curriculum“ published in Annals of Surgery (online ahead of print).

Congratulations!

Laparoscopy is becoming the standard approach in liver surgery. As the degree of difficulty varies greatly from core skills to advanced procedures, strategies for teaching young surgeons need to be reconsidered. We here aimed to design a skills curriculum for LLR. Using the nominal group technique, 22 substeps of LLR were identified by 61 hepatobiliary surgeons. The raters were asked to rate (1) the difficulty of substeps and (2) the minimum number of times that the substep must be performed for mastery of the technique. According to the frequency of defined substeps, being estimated on the basis of high volume center experiences (n = 222 LLR; 1/2017-12/2018), the center's training capacity and defined goals for a 2-year fellowship were calculated.
Ten surgical substeps (45%) are routinely performed and can thus be taught sufficiently at centers carrying out ≥50 LLR in 2 years. As the mobilization of the right liver lobe and the dissection of the hepatic artery or portal vein is performed in only 27% and 28% of all LLR, respectively, sufficient training can only be provided at centers with ≥100 LLRs in 2 years. Mastery of complex parenchymal dissection (19%) and hilar lymphadenectomy (8%) can only be achieved in center performing ≥200 LLR in 2 years.
The authors suggest a stepwise approach for training of hepatobiliary fellows in LLR. Based on the estimated complexity of the substeps and the size of the center, not every substep can be learned within 2 years.

Authors are Felix Krenzien, Wenzel Schöning, Philipp Brunnbauer, Christian Benzing, Robert Öllinger, Matthias Biebl, Marcus Bahra, Nathanael Raschzok, Daniel Cherqui, David Geller, Ho-Seong Han, Go Wakabayashi, Moritz Schmelzle, Johann Pratschke, and the study group of the International Laparoscopic Liver Society (ILLS).
EKFS grant | Metabolic reconditioning of steatotic rat liver grafts by normothermic ex vivo machine perfusion
Stacks Image 28760
The Else Kröner Fresenius Stiftung will fund the project "Metabolic reconditioning of steatotic rat liver grafts by normothermic ex vivo machine perfusion" (PI: Priv.-Doz. Dr. Nathanael Raschzok) for two years.

Liver transplantation is the treatment of choice for end-stage liver disease, yet the number of transplant candidates constantly exceeds the organ supply. The imbalance between demand and supply of liver grafts is dramatically exacerbated by the rising prevalence of obesity and the metabolic syndrome, which both show a strong correlation with steatosis hepatis. Liver grafts with macrovesicular steatosis above 30% are associated with delayed graft function and lower graft and patient survival, and livers with >60% steatosis are generally discarded from transplantation. Within the next 10 years, the overall liver graft utilization could potentially be halved due to the rising prevalence of steatosis, emphasizing the urgent clinical need to find solutions to make steatotic livers acceptable for transplantation.

In this project the hypothesis is tested whether metabolic reprogramming of steatotic liver grafts will 1) restore hepatocyte function, 2) activate lipid catabolism, 3) increase resistance to ischemia reperfusion damage, and 4) alleviate overwhelming inflammatory processes in the early phase of post-transplant regeneration with beneficial long-term impact for graft function and recipient survival.
The Human Liver Matrisome
Stacks Image 28765
Biomaterials accepted our latest paper on „The Human Liver Matrisome – Proteomic Analysis of Native and Fibrotic Human Liver Extracellular Matrices for Organ Engineering Approaches“.

The production of biomaterials that endow significant morphogenic and microenvironmental cues for the constitution of cell integration and regeneration remains a key challenge in the successful implementation of functional organ replacements. Despite the vast development in the production of biological and architecturally native matrices, the complex compositions and pivotal figures by which the human matrisome mediates many of its essential functions are yet to be defined. Here we present a thorough analysis of the native human liver proteomic landscape using decellularization and defatting protocols to extract create extracellular matrix scaffolds of natural origin that can further be used in both bottom-up and top-down approaches in tissue engineering based organ replacements. Furthermore, by analyzing human liver extracellular matrices in different stages of fibrosis and cirrhosis, we have identified distinct attributes of these tissues that could potentially be exploited therapeutically and thus require further investigation. The general experimental pipeline presented in this study is applicable to any type of tissue and can be widely used for different approaches in regenerative medicine and in the construction of novel biomaterials for organ engineering approaches.

Authors are A. Daneshgar, O. Klein, G. Nebrich, M. Weinhart, P. Tang, A. Arnold, I. Ullah, J. Pohl, S. Moosburner, N. Raschzok, B. Strücker, M. Bahra, J. Pratschke, I.M. Sauer, and K.H. Hillebrandt. The authors acknowledge the support of the Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025.
Stacks Image 28767
Ex vivo machine perfusion: current applications and future directions in liver transplantation
Stacks Image 28772
Langenbeck's Archives of Surgery accepted the manuscript „Ex vivo machine perfusion: current applications and future directions in liver transplantation“ for publication.

Liver transplantation is the only curative treatment option for end-stage liver disease, however, its use remains limited due to a shortage of suitable organs. In recent years, ex vivo liver machine perfusion has been introduced to liver transplantation, as a means to expand the donor organ pool.
To present a narrative review of prospective clinical studies on ex vivo liver machine perfusion, in order to assess current applications and highlight future directions.
Methods: A systematic literature search of both PubMed and ISI web of science databases as well as the ClinicalTrials.gov registry was performed.
Twenty articles on prospective clinical trials on ex vivo liver machine perfusion were identified. Out of these, eight reported on hypothermic, nine on normothermic, and two on sequential perfusion. These trials have demonstrated the safety and feasibility of ex vivo liver machine perfusion in both standard and expanded criteria donors. Currently, there are 12 studies enrolled in the clinicaltrials.gov registrar, and these focus on use of ex vivo perfusion in extended criteria donors as well as declined organs.
Ex vivo liver machine perfusion seems to be a suitable strategy to expand the donor pool for liver transplantation and holds promise as a platform for reconditioning diseased organs.

Authors are Julian Michelotto, Joseph MGV Gaßner, Simon Moosburner, Vanessa Muth, Madhukar S Patel, Markus Selzner, Johann Pratschke, Igor M. Sauer, and Nathanael Raschzok.
<<  Page 2 / 7  >>
Year
© 2025 Prof. Dr. Igor M. Sauer | Charité - Universitätsmedizin Berlin | Disclaimer

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.