Grant provided by the Berliner Krebsgesellschaft e.V.
Stacks Image 24090
Dr. med. M. Felsenstein receives a grant provided by the Berliner Krebsgesellschaft e.V. for his project "Deciphering the molecular determinants of pancreatic duct dysplasia by analysis of single-cell transcriptomics (RNAseq) in precursor lesions".

Besides great advances in the molecular and genetic understanding of pancreatic duct adenocarcinoma (PDAC), this tumor entity remains particularly aggressive with dismal prognosis. Recent single-cell sequencing studies underline the eminent urgency to understand tumor heterogeneity in the setting of PDAC. More detailed knowledge about the molecular mechanisms of pancreatic cancer evolution, carcinogenesis and heterogeneity could direct ideas for earlier detection and more effective targeted therapies, also preventing disease recurrence. Future therapeutic approaches in precision medicine will likely focus on the disease relevant sub-populations, specifically driving cancer progression, dissemination and exerting tumor escape mechanisms. In-depth transcriptomic data of single carcinoma environmental cells and respective cell clusters may help to discover novel biomarkers, which can be clinically instrumented for earlier detection and putatively increase the fraction of patients, amenable to curatively intended therapies. This study aims to analyze sorted single cells of macro-dissected precursor and cancerous lesions of the pancreas by single nuclei RNA sequencing (snRNAseq). In this feasibility study, we will include 10 patients, who will undergo resection of the pancreas due to “worrisome” or malignant lesions. We will perform in-depth transcriptomic analysis of pancreatic dysplasia in order to broaden our understanding of the molecular mechanisms of pancreatic carcinogenesis.

Stacks Image 27655
Our manuscript "Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants" has been accepted for publication in Frontiers in Immunology, section Alloimmunity and Transplantation. Authors are Muhammad Imtiaz Ashraf, Joerg Mengwasser, Anja Reutzel-Selke, Dietrich Polenz, Kirsten Führer, Steffen Lippert, Peter Tang, Edward Michaelis, Rusan Catar, Johann Pratschke, Christian Witzel, Igor M. Sauer, Stefan G. Tullius, and Barbara Kern.

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APC), particularly dendritic cells (DC), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DC (cDC) and APC on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation.
By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. While donor depletion of cDC and APC reduced frequencies, maturation, and activation of DC in all analysed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APC and cDC mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.




This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purpose illustrated in the Disclaimer. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.